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Desirability: the basics

Options and preferences
The option space U is a real linear space, consisting of options u.

A preference order ▷ represents Your preferences between options:
u ▷ v means that You strictly prefer option u over option v.

Rationality criteria for preference

Pr1. the relation ▷ is a strict partial ordering: irreflexive and transitive

Pr2. u ▷ v ⇒ u +w ▷ v +w for all u,v,w ∈ U

Pr3. u ▷ v ⇒ λu ▷ λv for all u,v ∈ U and λ > 0
Pr4. if u � v then also u ▷ v for all u,v ∈ U

Here, � is some background preference order, reflecting those mini-
mal preferences You must always have.

The preference order is typically partial, no totality requirement.
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EXAMPLES

– gambles f : X → R on some
set X

– indifference classes of gam-
bles on some set X

– Hermitian operators on a
complex Hilbert space
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Desirability: the basics

The background ordering � is
completely determined by its cone
of positive options

U�0 := {u ∈ U : u � 0}.

The preference order ▷ is completely determined by the convex cone

D := {u ∈ U : u ▷ 0},

as
u ▷ v ⇔ u − v ▷ 0 ⇔ u − v ∈ D.

Desirable options
A desirable option u is one You (strictly) prefer over the zero option.

We call D Your set of desirable options.
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The background ordering � is
completely determined by its cone
of positive options
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Coherence criteria for desirability
D1. 0 /∈ D

D2. u,v ∈ D ⇒ u + v ∈ D for all u,v ∈ U

D3. u ∈ D ⇒ λu ∈ D for all u ∈ U and λ > 0
D4. if u � 0 then also u ∈ D for all u ∈ U

A coherent set of desirable options D is a convex cone that includes
the positive convex cone U�0 and doesn’t contain 0.

We collect all coherent sets of desirable options D in the set D.
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X = {a,b}
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Desirability: conservative inference

X = {a,b}

a

b

posi(V)

:=
{ n

∑
k=1

λkuk : n> 0,uk ∈V,λk > 0
}

Important observation
The collection D of all coherent sets of desirable options is closed
under arbitrary non-empty intersections:

(∀i ∈ I)Di ∈ D ⇒
⋂
i∈I

Di ∈ D.

The intersection of any non-empty collection of coherent sets of
desirable options is still coherent.
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Consistency
An assessment A ⊆ U is consistent if it is included in some coherent
set of desirable options.
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X = {a,b}
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posi(V)

:=
{ n

∑
k=1

λkuk : n> 0,uk ∈V,λk > 0
}

Important observation
The collection D of all coherent sets of desirable options is closed
under arbitrary non-empty intersections:

(∀i ∈ I)Di ∈ D ⇒
⋂
i∈I

Di ∈ D.

The intersection of any non-empty collection of coherent sets of
desirable options is still coherent.

Closure (aka Natural extension)
If A is consistent, then

clD(A) :=
⋂
{D ∈ D : A ⊆ D}= posi(A ∪U�0)

is the smallest coherent set of desirable options that includes A.



“It’s probability theory, Jim, but not as we know it.”
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Archimedean models: the basics

Properties of a norm ‖•‖U :

(i) ‖u‖U ≥ 0;

(ii) ‖u‖U = 0 ⇔ u = 0;

(iii) ‖u + v‖U ≤ ‖u‖U +‖v‖U ;

(iv) ‖λu‖U = |λ |‖u‖U .

Structural assumptions
The option space U , provided with a norm ‖•‖U , is a normed linear
space.

The norm ‖•‖U induces a metric topology on U , with interior
operator Int and closure operator Cl.

A real functional Γ : U → R is bounded if its operator norm ‖Γ‖U ◦ is:

‖Γ‖U ◦ := sup
u∈U \{0}

|Γ(u)|
‖u‖U

<+∞.

Take as unit element 1U any element in the interior of U�0:

1U ∈ Int(U�0)
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Archimedean models: buying and selling price functionals

Λ(•) = 0

Λ(•) = 0

D

1U
u

v

u −Λ(u)1U

v −Λ(v)1U

Other ways to characterise Your preferences?

Buying price functional:

ΛD(u) := sup{α ∈ R : u −α1U ∈ D} for all u ∈ U

Selling price functional:

ΛD(u) := inf{β ∈ R : β1U −u ∈ D} for all u ∈ U

Conjugacy:
ΛD(u) =−ΛD(−u) for all u ∈ U
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Relation to Your preference model D

u ∈ Int(D)⇔ ΛD(u)> 0 and u ∈ Cl(D)⇔ ΛD(u)≥ 0

The real functional ΛD characterises D up to its topological boundary.
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Other ways to characterise Your preferences?

Buying price functional:

ΛD(u) := sup{α ∈ R : u −α1U ∈ D} for all u ∈ U

Selling price functional:

ΛD(u) := inf{β ∈ R : β1U −u ∈ D} for all u ∈ U

Relation to Your preference model D

u ∈ Int(D)⇔ ΛD(u)> 0 and u ∈ Cl(D)⇔ ΛD(u)≥ 0

The real functional ΛD characterises D up to its topological boundary.

u � v ⇔ Λ(u − v)> 0.



Archimedean models: coherent (lower and upper) previsions

P

P

P

Coherent lower prevision
A real functional P : U → R is a coherent lower prevision if and only if
there is some coherent set of desirable options D such that P = ΛD .

Coherent upper prevision
A real functional P : U → R is a coherent upper prevision if and only if
there is some coherent set of desirable options D such that P = ΛD .

Coherent prevision
A real functional P : U → R is a coherent prevision if and only if there
is some coherent set of desirable options D such that P = ΛD = ΛD .



Archimedean models: coherent (lower and upper) previsions

Characterisation
A real functional P : U → R is a coherent lower prevision if and only if

L1. P(u + v)≥ P(u)+P(v) for all u,v ∈ U

L2. P(λu) = λP(u) for all u ∈ U and all real λ > 0
L3. ‖P‖U ◦ <+∞
L4. P(u +α1U ) = P(u)+α for all u ∈ U and all real α
L5. if u � v then P(u)≥ P(v) for all u,v ∈ U

A real functional P : U → R is a coherent prevision if and only if

P1. P(u + v) = P(u)+P(v) for all u,v ∈ U

P2. ‖P‖U ◦ <+∞
P3. P(1U ) = 1
P4. if u � 0 then P(u)≥ 0 for all u ∈ U



Archimedean models: coherent (lower and upper) previsions

Vacuous lower and upper previsions
Price functionals associated with the background cone:

Inf�u := ΛU�0
(u) = sup{α ∈ R : u � α1U }

Sup�u := ΛU�0(u) = inf{α ∈ R : u ≺ α1U }

Simpler characterisation
A real functional P : U → R is a coherent lower prevision if and only if
L0. P(u)≥ Inf�u

L1. P(u + v)≥ P(u)+P(v) for all u,v ∈ U

L2. P(λu) = λP(u) for all u ∈ U and all real λ > 0

A real functional P : U → R is a coherent prevision if and only if

P0. P(u)≥ Inf�u

P1. P(u + v) = P(u)+P(v) for all u,v ∈ U
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Archimedean models: coherent (lower and upper) previsions

Lower envelope theorem

A real functional P : U → R is a coherent lower prevision if and only if
it is the lower envelope of some set M of coherent previsions:

P(u) = inf{P(u) : P ∈ M} for all u ∈ U .

In that case, the largest such set is the convex and (weak*)-closed

M(P) := {P : (∀u ∈ U )P(u)≥ P(u)}.

This is an instance of the Hahn–Banach Theorem.

The vacuous lower prevision Inf� is the lower envelope of the set of all
coherent previsions P.



Archimedean models: coherent (lower and upper) previsions

Related orderings

The weak dominance ordering

u > 0 ⇔ Inf�u ≥ 0 and u 6= 0

and the strong dominance ordering

u ⋗0 ⇔ Inf�u > 0.

HOMEWORK EXERCISE A: Show that u ⋗0 ⇒ u � 0 ⇒ u > 0.

HOMEWORK EXERCISE B: Show that Inf⋗ = Inf� = Inf>.
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Classical probability: gambles as options

X

x1

x2

x3

x4

...
xn−3

xn−2

xn−1

xn

Consider a variable X that assumes values in some non-empty set X,
but whose value You don’t know.

A bounded map f : X → R represents an uncertain reward f (X); we
call it a gamble.

The gambles constitute a normed linear space G with norm

‖f‖∞ := sup
x∈X

|f (x)|= sup|f |

and as unit gamble 1G the constant map 1:

1G (x) = 1 for all x ∈ X.
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Classical probability: gambles as options
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Classical probability: background ordering

The background ordering �
is the strict vector ordering on the vector space G that is always there,
regardless of what You may believe or prefer:

it represents COMPLETE IGNORANCE.

So, what is Your set of desirable gambles D under complete
ignorance?

A := Your set of accepted gambles

R := Your set of rejected gambles

D := Your set of desirable gambles = A∩−R

I := Your set of indifferent gambles = A∩−A

NO CONFUSION: A∩R = /0.

DESIRABILITY FRAMEWORK: 0 ∈ A and A = D∪ I and R =−D.
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Classical probability: background ordering

The one with constants:

µ ≥ 0 ⇒ µ1G ∈ A(
inf f ≥ µ and µ1G ∈ A

)
⇒ f ∈ A

inf f ≥ 0 ⇒ f ∈ A

µ < 0 ⇒ µ1G ∈ R(
sup f ≤ µ and µ1G ∈ R

)
⇒ f ∈ R

sup f < 0 ⇒ f ∈ R.

So:
{f ∈ G : inf f ≥ 0} ⊆ A and {f ∈ G : sup f < 0} ⊆ R (1)
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Classical probability: background ordering

The one with complete ignorance:(
f ∈ A and g(X)⊆ f (X)

)
⇒ g ∈ A

As a consequence:

f ∈ A ⇒ f (x)1G ∈ A for all x ∈ X [Complete Ignorance]
⇒ f (x)1G /∈ R for all x ∈ X [No Confusion]
⇒ f (x)≥ 0 for all x ∈ X [Eq. (1)]
⇒ inf f ≥ 0

So:

A ⊆ {f ∈ G : inf f ≥ 0} (2)

{f ∈ G : inf f ≥ 0} ⊆ A
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Classical probability: background ordering

The one with the conclusion:
Combining Eqs. (1) and (2) with No Confusion yields:

A = {f ∈ G : inf f ≥ 0}
{f ∈ G : sup f < 0} ⊆ R ⊆ {f ∈ G : inf f < 0}

−A = {f ∈ G : sup f ≤ 0}
{f ∈ G : inf f > 0} ⊆ −R ⊆ {f ∈ G : sup f > 0}

{f ∈ G : inf f > 0} ⊆ D ⊆ {f ∈ G : inf f ≥ 0 and f 6= 0}
I = {0}.

In the DESIRABILITY FRAMEWORK, the only remaining possibility is

D = {f ∈ G : inf f ≥ 0 and f 6= 0} and I = {0},

so
f � 0 ⇔ inf f ≥ 0 and f 6= 0.
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Classical probability: background ordering

EXERCISE 1: What is vacuous lower prevision Inf� that corresponds
to this background ordering �?

Inf� f = sup{α ∈ R : f −α1G � 0}
= sup{α ∈ R : inf(f −α1G )≥ 0 and f 6= α1G }
= sup{α ∈ R : inf f ≥ α and f 6= α1G }
= inf f .

and therefore the background ordering � is also the weak dominance
ordering > of our more general context.
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The coherent previsions
Expansion in the standard basis:

f = ∑
x∈X

f (x)I{x}.
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The coherent previsions
Expansion in the standard basis:

f = ∑
x∈X

f (x)I{x}.

EXERCISE 2: What is the prevision P(f ) of a gamble f ?

By linearity:
P(f ) = ∑

x∈X

f (x)P(I{x})︸ ︷︷ ︸
p(x)

= Ep(f ).

By the background condition:

∑
x∈X

p(x) = 1 and p(x)≥ 0.

P is a coherent prevision if and only if it’s the expectation operator
associated with a (finitely additive) probability measure.
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QUANTUM PROBABILITY



Quantum IP: pioneers
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Quantum probability: mathematical background

Properties of an inner product:

(i) (|ϕ〉, |ϕ〉)≥ 0;

(ii) (|ϕ〉, |ϕ〉) = 0 ⇔ |ϕ〉= 0;

(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Kets and bras
The state of a quantum system is an element of a (here
finite-dimensional) complex Hilbert space X.

Elements of X are called state vectors or pure states or kets, and
denoted by |ϕ〉.

A Hilbert space has an inner product (•, •) : X 2 → C.

The map
(|ψ〉, •) : X → C : |ϕ〉 7→ (|ψ〉, |ϕ〉)

is a linear functional on X, denoted by 〈ψ|, and called a dual state
vector or bra.

The inner product (|ψ〉, |ϕ〉) of |ϕ〉 and |ψ〉 is a complex number that
results from the action of the bra 〈ψ| on the ket |ϕ〉, resulting in

〈ψ|ϕ〉 := (|ψ〉, |ϕ〉).



Quantum probability: mathematical background

Properties of an inner product:

(i) (|ϕ〉, |ϕ〉)≥ 0;

(ii) (|ϕ〉, |ϕ〉) = 0 ⇔ |ϕ〉= 0;

(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Normal and orthogonal

If
〈ϕ|ϕ〉= (|ϕ〉, |ϕ〉) = 1,

then |ϕ〉 is normal(ised).

If
〈ψ|ϕ〉= (|ψ〉, |ϕ〉) = 0,

then |ϕ〉 and |ψ〉 are orthogonal.
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(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Linear operators and their adjoints
A linear operator Â on X is a linear map Â : X → X:

Â(λ |ϕ〉+µ|ψ〉) = λ Â|ϕ〉+µÂ|ψ〉 for all |ϕ〉, |ψ〉 ∈ X and λ ,µ ∈ C.

The adjoint Â† of Â is the unique linear operator on X such that(
Â†|ψ〉, |ϕ〉

)
=
(
|ψ〉, Â|ϕ〉

)
for all |ϕ〉, |ψ〉 ∈ X.

(
|ψ〉, Â|ϕ〉

)
=
(
Â†|ψ〉, |ϕ〉

)
=
(
|ϕ〉, Â†|ψ〉

)
=
(
(Â†)

†|ϕ〉, |ψ〉
)

=
(
|ψ〉,(Â†)

†|ϕ〉
)

so
(Â†)

†
= Â.



Quantum probability: mathematical background

Properties of an inner product:

(i) (|ϕ〉, |ϕ〉)≥ 0;
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(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Hermitian operators
A linear operator Â is self-adjoint or Hermitian if Â = Â†, so(

Â|ψ〉, |ϕ〉
)
=
(
|ψ〉, Â|ϕ〉

)
=: 〈ψ|Â|ϕ〉 for all |ϕ〉, |ψ〉 ∈ X.

Quadratic forms of Hermitian operators are real:

〈ϕ|Â|ϕ〉= (|ϕ〉, Â|ϕ〉) = (Â|ϕ〉, |ϕ〉) = (|ϕ〉, Â|ϕ〉) = 〈ϕ|Â|ϕ〉 ∈ R

The Hermitian operators on X constitute a real vector space H .(
a b
c d

)
=

(
a c
b d

)

dim(H ) = dim(X)2.
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Properties of an inner product:
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(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Linear operators and their eigenkets and eigenvalues
If

Â|ϕ〉= λ |ϕ〉,

then |ϕ〉 is an eigenket of Â with eigenvalue λ .

All the eigenvectors that correspond to the same eigenvalue λ form a
subspace Eλ of X, called the eigenspace of λ .

If Â is Hermitian, then its eigenvalues are real and its eigenspaces are
orthogonal:

λ1 6= λ2 ⇒ 〈ψ|ϕ〉= 0 for all |ϕ〉 ∈ Eλ1 and |ψ〉 ∈ Eλ2 .

We can always find an orthonormal basis of X consisting of
eigenvectors of a Hermitian operator.
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Properties of an inner product:

(i) (|ϕ〉, |ϕ〉)≥ 0;

(ii) (|ϕ〉, |ϕ〉) = 0 ⇔ |ϕ〉= 0;

(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Projection operators
A projection operator P̂ is a Hermitian operator whose only
eigenvalues are 0 and 1, so

P̂|ϕ〉= |ϕ〉 or P̂|ϕ〉= 0,

and therefore P̂2 = P̂, and

E0 = ker P̂ and E1 = P̂X = {P̂|ϕ〉 : |ϕ〉 ∈ X} and E1 ⊕E0 = X.

For every normalised |ϕ〉 ∈ X, the linear operator

|ϕ〉〈ϕ| : |ψ〉 7→ (|ϕ〉〈ϕ|)|ψ〉= |ϕ〉〈ϕ |ψ〉= 〈ϕ |ψ〉|ϕ〉

is a projection operator that projects orthogonally onto the
one-dimensional subspace spanned by |ϕ〉.
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Properties of an inner product:

(i) (|ϕ〉, |ϕ〉)≥ 0;

(ii) (|ϕ〉, |ϕ〉) = 0 ⇔ |ϕ〉= 0;

(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Projection operators

For any |ϕ〉 ∈ X:

|ϕ〉= λ |ψ1〉+µ|ψ0〉 with 〈ψ1|ψ0〉= 0

and then

〈ϕ|P̂|ϕ〉= (λ 〈ψ1|+µ〈ψ0|)P̂(λ |ψ1〉+µ|ψ0〉)
= (λ 〈ψ1|+µ〈ψ0|)λ |ψ1〉
= |λ |2〈ψ1|ψ1〉 ≥ 0.
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Properties of an inner product:

(i) (|ϕ〉, |ϕ〉)≥ 0;

(ii) (|ϕ〉, |ϕ〉) = 0 ⇔ |ϕ〉= 0;

(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Hermitian operators and projections
If Â is a Hermitian operator, then

Â = ∑
λ∈spec(Â)

λ P̂E

and then
〈ϕ|Â|ϕ〉= ∑

λ∈spec(Â)

λ 〈ϕ|P̂E |ϕ〉︸ ︷︷ ︸
≥0

so 〈•|Â|•〉 ≥ 0 everywhere if and only if

minspec(Â)≥ 0
which means that

A is positive semidefinite.
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(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Density operators
For any p1, . . . ,pn ∈ R>0 such that ∑n

k=1 pk = 1, and any linearly
independent |ϕ1〉, . . . , |ϕn〉 in X, the linear operator

ρ̂ :=
n

∑
k=1

pk|ϕk〉〈ϕk|

is a density operator.

Observe that

– ρ̂ is Hermitian

– minspec(ρ̂)≥ 0, so ρ̂ ≥ 0 is positive semidefinite

– Tr(ρ̂) = ∑n
k=1 pk = 1
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Properties of an inner product:

(i) (|ϕ〉, |ϕ〉)≥ 0;

(ii) (|ϕ〉, |ϕ〉) = 0 ⇔ |ϕ〉= 0;

(iii) (|ϕ〉, |ψ〉) = (|ψ〉, |ϕ〉);
(iv) (•,λ |ϕ〉+µ|ψ〉) = λ (•, |ϕ〉)+

µ(•, |ψ〉).

Measurement in quantum mechanics

Any quantum system is in some normalised state |ϕ〉 ∈ X with
〈ϕ|ϕ〉=1.

Any measurement on the system

– corresponds to a Hermitian operator Â, and

– the possible outcomes are the eigenvalues λ ∈ spec(Â).



Quantum probability: measurements as options

Consider a quantum system whose unknown state |Ψ〉 lives in an n-
dimensional complex Hilbert state space X , so

|Ψ〉 ∈ X and 〈Ψ|Ψ〉= 1.

Any measurement corresponds to some Hermitian operator Â, and its
outcome is uncertain. Its reward is the measurement outcome.

All measurements constitute a real n2-dimensional Hilbert space H ,
with (Frobenius) inner product

(Â, B̂) := Tr(Â†B̂) = Tr(ÂB̂), for all Â, B̂ ∈ H ,

corresponding (Frobenius) norm

‖Â‖H :=
√

(Â, Â) =
√

Tr(Â†Â) for all Â ∈ H ,

and unit measurement 1H := Î.



Quantum probability: background ordering

The background ordering �
is the strict vector ordering on H that is always there, regardless of
what You may believe or prefer:

it represents COMPLETE IGNORANCE.

EXERCISE 3: What is Your set of desirable measurements D under
complete ignorance?

A := Your set of accepted measurements

R := Your set of rejected measurements

D := Your set of desirable measurements = A∩−R

I := Your set of indifferent measurements = A∩−A

NO CONFUSION: A∩R = /0.

DESIRABILITY FRAMEWORK: 0 ∈ A and A = D∪ I and R =−D.
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Quantum probability: background ordering

The one with constants:

µ ≥ 0 ⇒ µ Î ∈ A(
minspec(Â)≥ µ and µ Î ∈ A

)
⇒ Â ∈ A

minspec(Â)≥ 0 ⇒ Â ∈ A

µ < 0 ⇒ µ Î ∈ R(
maxspec(Â)≤ µ and µ Î ∈ R

)
⇒ Â ∈ R

maxspec(Â)< 0 ⇒ Â ∈ R.

So:

{Â ∈ H : minspec(Â)≥ 0} ⊆ A and {Â ∈ H : maxspec(Â)< 0} ⊆ R
(3)
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Recall that the Hermitian opera-
tor Â is

positive semidefinite if

minspec(Â)≥ 0,

positive definite if
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Quantum probability: background ordering

Recall that the Hermitian opera-
tor Â is

positive semidefinite if

minspec(Â)≥ 0,

positive definite if

minspec(Â)> 0,

and negative definite if

maxspec(Â)< 0.

The one with complete ignorance:(
Â ∈ A and spec(B̂)⊆ spec(Â)

)
⇒ B̂ ∈ A

As a consequence:

Â ∈ A ⇒ λ Î ∈ A for all λ ∈ spec(Â) [Complete Ignorance]

⇒ λ Î /∈ R for all λ ∈ spec(Â) [No Confusion]

⇒ λ ≥ 0 for all λ ∈ spec(Â) [Eq. (3)]

⇒ minspec(Â)≥ 0

So:

A ⊆ {Â ∈ H : minspec(Â)≥ 0} (4)

{Â ∈ H : minspec(Â)≥ 0} ⊆ A
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Quantum probability: background ordering

Recall that the Hermitian opera-
tor Â is

positive semidefinite if

minspec(Â)≥ 0,

positive definite if

minspec(Â)> 0,

and negative definite if

maxspec(Â)< 0.

The one with the conclusion:
Combining Eqs. (3) and (4) with No Confusion yields:

A = {Â : minspec(Â)≥ 0}
{Â : maxspec(Â)< 0} ⊆ R ⊆ {Â : minspec(Â)< 0}

−A = {Â : maxspec(Â)≤ 0}
{Â : minspec(Â)> 0} ⊆ −R ⊆ {Â : maxspec(Â)> 0}

{Â : minspec(Â)> 0} ⊆ D ⊆ {Â : minspec(Â)≥ 0 and Â 6= 0}
I = {0}.

In the DESIRABILITY FRAMEWORK, the only remaining possibility is

D = {Â ∈ H : minspec(Â)≥ 0 and Â 6= 0} and I = {0},

so
Â � 0 ⇔ minspec(Â)≥ 0 and Â 6= 0.
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Quantum probability: background ordering

EXERCISE 4: What is vacuous lower prevision Inf� that corresponds
to this background ordering �?

Inf� Â = sup{α ∈ R : Â−α1H � 0}
= sup{α ∈ R : minspec(Â−α Î)≥ 0 and Â 6= α Î}
= sup{α ∈ R : minspec(Â)≥ α and Â 6= α Î}
= minspec(Â).

and therefore the background ordering � is also the weak dominance
ordering > of our more general context.
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Quantum probability: coherent previsions

Recall that a density operator ρ̂ is
a positive semidefinite Hermitian
operator such that Tr ρ̂ = 1.

The coherent previsions on H

are the real functionals P : H → R that are:

– linear in the sense that

P(λ Â+µB̂) = λP(Â)+µP(B̂) for all Â, B̂ ∈ H and λ ,µ ∈ R;

– bounded in the sense that

minspec(Â)≤ P(Â)≤ maxspec(Â) for all Â ∈ H .



Quantum probability: coherent previsions

Recall that a density operator ρ̂ is
a positive semidefinite Hermitian
operator such that Tr ρ̂ = 1.

The one with linearity:

By the Riesz Representation Theorem, there is some unique B̂P ∈ H
such that

P(Â) = (B̂P , Â) = Tr(B̂P Â) for all Â ∈ H .

The one with boundedness:
EXERCISE 5: Show that B̂P is a density operator.

The one going backwards:

HOMEWORK EXERCISE C: Show that Â 7→ Tr(ρ̂Â) is a coherent
prevision for any density operator ρ̂.
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Quantum probability: coherent previsions

Recall that a density operator ρ̂ is
a positive semidefinite Hermitian
operator such that Tr ρ̂ = 1.

Conclusion: Born’s rule
There is a one-to-one correspondence between coherent previsions P
and density operators ρ̂, with

P(Â) = Tr(ρ̂Â) for all Â ∈ H .



CONCLUSIONS



To conclude:

– Probability theory (in the form of desirability) is a deductive infer-
ence system, provided we allow for partial specification.

– probability = linearity + background ordering.

– the difference between classical and quantum probability lies only
in the background ordering.

– the connection between classical and quantum probability is deep-
rooted, and stares you in the face as soon as you have the right
language to express probabilities in.

– what the background ordering is, is determined by what it means
to be completely ignorant, and therefore also by the ‘physics’ of
the problem.

– working with sets of desirable measurements = Heisenberg pic-
ture

– working with sets of density operators = Schrödinger picture



MORE RELEVANT LITERATURE






