SIPTA

GHENT
UNIVERSITY

SIPTA Summer School
12—16 August 2024
Ghent University

Quantum probability

material for the afternoon of day 4

Gert de Cooman

Foundations Lab
for imprecise probabilities



lower
previsions

IP ON

VECTOR
SPACES

desirability







IMPRECISE PROBABILITY ON
NORMED REAL VECTOR SPACES



Desirability: pioneers

% % l

PETER WILLIAMS PETER WALLEY

ENRIQUE MIRANDA  MARCO ZAFFALON

ERIK QUAEGHEBEUR

SERAFIN MORAL

GERT DE COOMAN



Desirability: the basics

Options and preferences
The option space % is a real linear space, consisting of options u.



Desirability: the basics

— gambles f: Z'— R on some
set &

— indifference classes of gam-
bles on some set 2

— Hermitian operators on a
complex Hilbert space

Options and preferences

The option space % is a real linear space, consisting of options u.

A preference order > represents
u > v means that You

preferences between options:
option u over option v.



Desirability: the basics

Options and preferences
The option space % is a real linear space, consisting of options u.

A preference order > represents preferences between options:
u > v means that You option u over option v.

Rationality criteria for preference

Pr1. the relation > is a strict partial ordering: irreflexive and transitive
Pr2. uv=u+wrsv+wforalu,v,we %

Pr3. u>v=Aur Avforallu,v € % and L >0

Prd. ifu = vthenalsou > vforallu,v ¢ %



Desirability: the basics

The 7% is areal linear space, consisting of u.
A > represents preferences between options:
u > v means that You option u over option v.

Pr1. the relation > is a strict partial ordering: irreflexive and transitive
Pr2. uv=u+wrv+wforallu,v,we¥

Pr3. u>v=Aur> Avforallu,ve % and 1 >0

Prd. if u = vthenalsou > vforallu,v €

Here, - is some preference order, reflecting those mini-
mal preferences You must always have.

The preference order is typically , requirement.



Desirability: the basics

The preference order > is completely determined by the
The background ordering > is
completely determined by its cone D={uec%:ur 0},
of positive options
as
Uo={uec:u>0} u>vsu—v>0&su—veD.



Desirability: the basics

The background ordering > is
completely determined by its cone
of positive options

U ={uc:u>0}.

The preference order > is completely determined by the
D={ue: ur 0},

as
u>bvesu—v>0&su—veD.

Desirable options
A desirable option u is one You (strictly) prefer over the zero option.

We call D Your set of desirable options.



Desirability: the basics

The background ordering > is Coherence criteria for desirability

completely determined by its cone D1. 0¢ D
of positive options D2. u,veD = u+veDiorallu,ve

Uo={uecW:u>0}. D3. ueD=AucDforalluec? and A >0
D4. ifu = Othenalsou € D forallu € %



Desirability: the basics

The background ordering > is
completely determined by its cone
of positive options

U ={uc:u>0}.

Coherence criteria for desirability

D1. 0¢ D

D2. uyveD=u+veDforallu,ve#

D3. ueD=AuecDforalluecZ and A >0
D4. ifu > Othenalsou e D forallu €

A coherent set of desirable options D is a that includes
the positive convex cone 7/ and doesn’t contain 0.

We collect all coherent sets of desirable options D in the set D.



Desirability: the basics

2 ={a,b}

a

Coherence criteria for desirability
D1. 0¢D

D2. uyveD=u+veDforallu,ve#
D3. ueD=AucDforaluc % and A >0
D4. ifu = Othenalsou € D forallu € %

A coherent set of desirable options D is a convex cone that includes
the positive convex cone 7/ ( and doesn’t contain 0.

We collect all coherent sets of desirable options D in the set D.



Desirability: conservative inference

2= {a,b}

Important observation

The collection D of all coherent sets of desirable options is closed
under arbitrary non-empty intersections:

(VieI)D;eD =(\D; €D.
iel

The intersection of any non-empty collection of coherent sets of
desirable options is still coherent.



Desirability: conservative inference

#={ab} Important observation
b The collection D of all coherent sets of desirable options is closed
under arbitrary non-empty intersections:
N (VieI)D;eD =(\D; €D.
iel
a The intersection of any non-empty collection of coherent sets of

© desirable options is still coherent.

Consistency
An assessment A C % is consistent if it is included in some coherent
set of desirable options.

posi(V)

n
Z:{Zlkuki n>0,uk€V,)Lk>0}
k=1



Desirability: conservative inference

#=tab} Important observation
b The collection D of all coherent sets of desirable options is closed
under arbitrary non-empty intersections:
g (VieI)D;eD =(\D; €D.
iel
a The intersection of any non-empty collection of coherent sets of

© desirable options is still coherent.

Closure (aka Natural extension)
If A is consistent, then

clp(A) = ﬂ{D €D:ACD} =posi(AUZ% )

posi(V)

n
::{Zlkuk:n>07uk€V,lk>0

} is the smallest coherent set of desirable options that includes A.
k=1



“It's probability theory, Jim, but not as we know it.”
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Received 13 April 2021 between options that live in an abstract Banach space, through a very general class of
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pay special attention to the case where these linear spaces don't include all ‘constant’
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Iéff;‘}ﬁ“}inmon (and coherent) choice models, and also pay quite a lot of attention to representation of
Set of desirable option sets general (non-binary) choice models in terms of the simpler, binary ones. The representation
Coherence theorems proved here provide an axiomatic characterisation for, amongst many other
Archimedeanity choice methods, Levi’s E-admissibility and Walley-Sen maximality.
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Archimedean models: the basics

Structural assumptions
The option space %, provided with a norm |||, , is a

The norm ||¢||,, induces a on 7/, with interior
operator Int and closure operator CI.

Properties of a norm |[e|| 4, :

) |lully =0 A real functional I": % — R is bounded if its operator norm |||, is:
( ) llully =0 u=0;
R v (]
(i) Nl vl < llullay + Vil I . <o

uea\{oy lullz
(iv) [[Aullg = |A[ulle -



Archimedean models: the basics

Structural assumptions
The option space %, provided with a norm |||, , is a

) The norm ||¢||,,, induces a on 7/, with interior
p operator Int and closure operator CI.
1
II OZ/>O
/ A real functional I': % — R is bounded if its operator norm [|T'[[ ., is:
1
1
1
A IC(w)|
,I = HFH”//" = sup < +o0
p = wear\joy [l
L
0

Take as unit element 14, any element in the interior of 7/ :

14, € Int(%-o)



Archimedean models: buying and selling price functionals

Other ways to characterise Your preferences?

Buying price functional:
Ap(u) =sup{a e R: u—aly €D} forallu ¢ %

Selling price functional:

Ap(u) =inf{B €R: Blyy —uc D} foralu € %

Conjugacy:

Ap(u) =—Ap(—u)forallu e



Archimedean models: buying and selling price functionals

Other ways to characterise Your preferences?
Buying price functional:

Ap(u) =sup{a e R: u—aly €D} forallu ¢ %
Selling price functional:

Ap(u) =inf{B €R: Blyy —uecD}forallu e %

Relation to Your preference model D

uet(D) < Ap(u) >0andu € CI(D) < Ap(u) >0

The real functional Ap characterises D up 1o its topological boundary.



Archimedean models: buying and selling price functionals

Other ways to characterise Your preferences?

Buying price functional:
Ap(u) =sup{a e R: u—aly €D} forallu ¢ %
Selling price functional:

Ap(u) =inf{B €R: Blyy —uc D} foralu € %

Relation to Your preference model D
uet(D) < Ap(u) >0andu € CI(D) < Ap(u) >0
The real functional Ap characterises D up 1o its topological boundary.

u-veAlu—v)>0.



Archimedean models: coherent (lower and upper) previsions

P

=l

Coherent lower prevision

A real functional P: Z — Ris a if and only if
there is some D suchthat P = Ap.

Coherent upper prevision

A real functional P: % — R is a coherent upper prevision if and only if
there is some D such that P = Ap.

Coherent prevision

A real functional P: % — Ris a if and only if there
is some D suchthat P =Ap = Ap.



Archimedean models: coherent (lower and upper) previsions

Characterisation
A real functional P: ZZ — Ris a

if and only if
L1. P(u+v)>P(u)+P(v)forallu,v e %
L2. P(Au) =AP(u)forallu € 7 and allreal A > 0
L3. [|P[l40 < oo
L4. P(u+oly)=P(u)+oaforallu € 7% andallreal
L5. ifu = vthen P(u) > P(v) forallu,v € %
Areal functional P: % — Ris a if and only if

P1. P(u+v)=P(u)+P(v)forallu,v € %
P2. [|P||,0 < +oo

P3. P(1,) = I

P4. if u = Othen P(u) > Oforallu € %



Archimedean models: coherent (lower and upper) previsions

Vacuous lower and upper previsions
Price functionals associated with the

Inf,u:=Aqy  (u) =sup{ad €R: u > aly}

Sup>u = A&g}o(u) = inf{a eR:u< (Xlo//}



Archimedean models: coherent (lower and upper) previsions

Vacuous lower and upper previsions
Price functionals associated with the

Inf,u:=Aqy  (u) =sup{ad €R: u > aly}

Sup,_u:=Ay_,(u) =infla € R: u < aly }

Simpler characterisation

A real functional P: ZZ — Ris a if and only if
LO. P(u) > Inf_u

L1. P(u+v)>P(u)+P(v)forallu,v € %

L2. P(Au) =AP(u)forallu € 7 and allreal A > 0

A real functional P: %/ — Ris a if and only if
PO. P(u) > Inf.u

P1. P(u+v)=P(u)+P(v)forallu,v € %



Archimedean models: coherent (lower and upper) previsions

A real functional P: % — R is a coherent lower prevision if and only if
it is the of some set .7 of coherent previsions:

P(u)=inf{P(u): P .} foralluc%.
In that case, the largest such set is the convex and (weak*)-closed

AMP)={P: (YuecZ)P(u)>Pu)}.

This is an instance of the

The vacuous lower prevision Inf. is the of the set of all
coherent previsions IP.



Archimedean models: coherent (lower and upper) previsions

Related orderings

The weak dominance ordering
u>0<«<Infru>0andu #0
and the strong dominance ordering

u>0<Infou > 0.

HOMEWORK EXERCISE A: Show that u >0 = u > 0= u > 0.
HOMEWORK EXERCISE B: Show that Inf;. = Inf, = Inf. .
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Classical probability: gambles as options

Consider a X that assumes values in some non-empty set .7,
but whose value You don’t know.




Classical probability: gambles as options

Consider a X that assumes values in some non-empty set .7,
but whose value You don’t know.
Z'={a,b} A bounded map /: .2"— R represents an f(X); we
callita

a




Classical probability: gambles as options

1y

Consider a X that assumes values in some non-empty set .7,
but whose value You don’t know.

A bounded map f: 2 — R represents an f(X); we
callita
The gambles constitute a ¢ with

[[f[les == sup |f (x)| = suplf]
xe&

and as 14 the constant map 1:

lgy(x)=1forallx € Z.



Classical probability: background ordering

—
is the strict vector ordering on the vector space ¢ that is always there,
regardless of what You may believe or prefer:

it represents

So, what is Your D under complete
ignorance?



Classical probability: background ordering

The background ordering >

is the strict vector ordering on the vector space ¢ that is always there,
regardless of what You may believe or prefer:
it represents

So, what is Your D under complete
ignorance?

A = Your set of accepted gambles

R = Your set of rejected gambles

D = Your set of desirable gambles = AN —R
I := Your set of indifferent gambles = AN —A

NO CONFUSION: ANR = 0.
DESIRABILITY FRAMEWORK: 0 c Aand A =DU/l and R = —D.
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Available online 24 December 2014 : " N -~
terms of preference relations, discuss—as a bridge to existing frameworks—a number of

Keywords: simplified variants, and show the relationship with prevision-based uncertainty models.
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Classical probability: background ordering
The one with constants:
Uu>0=puly cA

(inff > pand uly €A) = f €A
inff >0=f€cA

u<0=puly €RrR
(supf <pand uly €R) =f€R

supf <0=f€R.



Classical probability: background ordering
The one with constants:
Uu>0=puly cA

(inff >pand uly €A) =f €A
inff>0=fcA

2'={a,b}

A u<0=uly R
(supf <pand uly €R) =f€R
@ supf <0=f€R.

So:
{fe¥: inff >0} CAand {f €¥: supf <0} CR




Classical probability: background ordering

The one with complete ignorance:

(feAandg(2) Cf(2)) =g€A
As a consequence:

feA :>f(x)1g cAforallxe 27 [Complete Ignorance]
=f(x)ly ¢ Rforallx e 2 [No Confusion]
= f(x)>0forallxe 2 [Eq. (1)]

= inff >0



Classical probability: background ordering

The one with complete ignorance:

(feAandg(2) Cf(2)) =g€A
As a consequence:

feA :>f(x)1g cAforallxe 27 [Complete Ignorance]
=f(x)ly ¢ Rforallx e 2 [No Confusion]
= f(x)>0forallxe 2 [Eq. (1)]

= inff >0

So:

AC{fe9: inff >0} )
{fe?: nff >0} CA



Classical probability: background ordering

The one with the conclusion:
Combining Egs. (1) and (2) with No Confusion yields:
A={fe%: inff >0}
{f€9: supf <0} CRC{f€¥: inff <0}
—A={fe¥9: supf <0}
{fe9: inff >0} C—RC{fe¥: supf >0}
{fe’: inff >0} CDC{fe¥: inff >0andf #0}
I={0}.




Classical probability: background ordering

, , The one with the conclusion:
strong dominance ordering o ) ) )
b Combining Egs. (1) and (2) with No Confusion yields:

A={fe%: inff >0}
{f€9: supf <0} CRC{f€¥: inff <0}
—A={fe¥: supf <0}
{fe?: inff >0} C—RC{fe¥: supf >0}
weak dominance ordering rev: inff>0}ng‘{{f}eg: inff > 0 and f # 0}
b I=10}.




Classical probability: background ordering

The one with the conclusion:
Combining Egs. (1) and (2) with No Confusion yields:
A={fe%: inff >0}
{f€9: supf <0} CRC{f€¥: inff <0}
—A={fe¥9: supf <0}
{fe?: inff >0} C—RC{fe¥: supf >0}

G i CDC 94 i >
weak dominance ordering {f € inff > O} S J{LJ(C)}E ¢ inff > 0andf # O}
b I = .

In the , the only remaining possibility is

D={fe%: inff >0andf #0} and I = {0},

f = 0« inff >0andf #0.



Classical probability: background ordering

EXERCISE 1: What is vacuous lower prevision Inf._ that corresponds
to this background ordering > ?



Classical probability: background ordering

EXERCISE 1: What is vacuous lower prevision Inf._ that corresponds
to this background ordering > ?

Inf. f =sup{a € R: f —aly = 0}
=sup{o € R: inf(f —aly) >0andf # oly}
=sup{a € R: inff > a and f # ol }
— inff.

and therefore the background ordering > is also the
> of our more general context.



Classical probability: coherent previsions

The coherent previsions
Expansion in the standard basis:

2'={a,b} f=Y 0.
xe&
b
f(a) ,
f(b) 4




Classical probability: coherent previsions

The coherent previsions
Expansion in the standard basis:

2 ={a,b} f=Y 0.
xeEX
b EXERCISE 2: What is the prevision P(f) of a gamble f?
f(a)
7 a
b) b--4
f(b) f




Classical probability: coherent previsions

The coherent previsions
Expansion in the standard basis:

2 ={a,b} f=Y 0.
xeEX
b EXERCISE 2: What is the prevision P(f) of a gamble f?
By :

P(f) = Z f(x)P(H{\}) = Ep(f)'
XX SN——
fa) px)

| By the
| x) = 1 and p(x) > 0.
o) |-, (‘;};P( ) (x)
P is a coherent prevision if and only if it's the operator

associated with a (finitely additive)
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Quantum probability: mathematical background

Properties of an inner product:

) (19),19)) >0
() (19),19)) =0« [9) =
(i) (18),1w)) = (w),19)):

) (% A]9) +ulw) =
(s w)).

IV

A(s[9))+

Kets and bras
The state of a quantum system is an element of a (here
) complex Hilbert space Z.

Elements of .2 are called state vectors or pure states or kets, and
denoted by |¢).

A Hilbert space has an inner product (s,¢): 2% — C.

The map
(Iv),2): Z—C: |9) = ([w),9))

is a on 2, denoted by (y], and called a dual state
vector or bra.

The inner product (Jy),|¢)) of |¢) and |y) is a complex number that
results from the action of the bra (]| on the ket |9), resulting in

(wl9) = ([w),9))-



Quantum probability: mathematical background

Normal and orthogonal

If
(0l9) = (10).19)) =

then |¢) is normal(ised).
Properties of an inner product:

) (19),19)) >0

() (19).190)) =0« |¢) =
(i) (|9}, |w)) = (Jw),[9)); (v]o) = (lwv),|9)) =0,

(V) (o, 210) + 1|y)) = A(s,|0)) + then |¢) and |y) are orthogonal.
(s w)).



Quantum probability:

Properties of an inner product:
) (19),1¢)) =0
() (1),10)) =0« [9) =
(iii) (10).[w)) = (w),|9));

(V) (+A19) +uly)) =
(s w)).

A(s[9))+

mathematical background

Linear operators and their adjoints
A linear operator A on 2’is a linear map A: 2" — 2

A(R|9) +uly)) =

The adjoint AT of A is the

AA|Q) + uA|y) for all |¢), |y) € Zand A,u € C.

linear operator on .2 such that

(A7|w).19)) = (lw).Al9)) for all [), |y) € 2.

(1w),A19) = (A'|y), |¢}) = (|¢).At|y)) = ((AT)?W% )
= (ly).(A")'|9))

SO



Quantum probability: mathematical background

Hermitian operators
A linear operator A is self-adjoint or Hermitian if A = AT, so

(Alw), 1)) = (1v),Al9))
= (y|A|¢) for all [¢),|y) € 2

Quadratic forms of Hermitian operators are

Properties of an inner product:
) (1¢),1¢)) =0

® (4h1d) =00 o} =0 (01A19) = (16),419)) = (A19),10)) = (10),A19)) = (9IA]o) € R
(iii) (10).[w)) = (w),|9));

(V) (= A19) +uly)) = A(e|9)) +
(e w)). a b a c
(c d) B <b d)

dim () = dim(2)?.

The Hermitian operators on .2 constitute a vector space .77 .



Quantum probability: mathematical background

Properties of an inner product:
) (19),1¢)) =0
() (1),10)) =0« [9) =
(iii) (10).[w)) = (w),|9));

IV

) (o
(s w)).

A1)+ uly)) = A(e19)) +

Linear operators and their eigenkets and eigenvalues
If
Alg) = Al9),

then |¢) is an eigenket of A with eigenvalue A.

All the eigenvectors that correspond to the same eigenvalue A form a
&, of 2, called the eigenspace of 1.

If A is Hermitian, then its eigenvalues are and its eigenspaces are

M # A = (y|o) =0forall |9) € &, and |y) € &,.

We can always find an of 2 consisting of
eigenvectors of a Hermitian operator.



Quantum probability: mathematical background

Projection operators

A projection operator P is a Hermitian operator whose only
eigenvalues are 0 and 1, so

Plg) = |¢) or Plg) =0,

Propert|es of an inner product: and therefore P> — P, and

) (19),1¢)) =0 . R R
( ) (10), ) = 0 <> ) = O; & =kerPand & = P2 ={P|¢): |¢) € 2} and & DSy = 2.
(iii) (10).[w)) = (w),|9)); For every |¢) € 2, the linear operator
(V) (5, A]0) +uly)) = A(s[9)) +
(e ). 0)(91: [w) = (18)(@)|w) = [9)(9]w) = (¢]¥)[9)

is a that projects orthogonally onto the
spanned by |¢).



Quantum probability: mathematical background
Projection operators
Forany |¢) € 2

0) = A|y1) + 1| wo) with (i |yp) =0

Properties of an inner product:

and then
) (10),19)) >0 -
() (19), 1)) = 0 < |¢) =0: (91P19) = (A (w1 |+ (ol ) P(A|y1) + 1| wo))
(i) ([}, 1) = (w),[9)): = (A{y1| + 1 {wol)A | y1)
(V) (s, 210) +1|w) = A(=,]0)) + = [A[*(yiy1) >0

) (s
(s w)).



Quantum probability: mathematical background

Hermitian operators and projections
If A is a Hermitian operator, then

A= Y ik,
Aespec(A)
Properties of an inner product: and then
) (19).16)) > 0; (9lAlo)= ). A(9lPsle)
<> (19).16) =0 & [9) =0: Aespeed) 50
(i) (19}, 1w)) = (1w). 19)); so (s|A|+) > 0 everywhere if and only if
(iv) (A10)+uly)) =2A(s[0))+ _ .
(s, |v)). minspec(A) >0

which means that
A is positive semidefinite.



Quantum probability: mathematical background

Density operators
Forany py,....p, € Rog suchthat Y}, pr = 1, and any linearly
mdependent [01)....,]¢,) in 2 the linear operator

n

6= prlow) (ol

Properties of an inner product: k=1
) (19),1¢7) = 0; is a density operator.
( ) (10),10)) =0 1[9) =0
(i) (19),1v)) = (w), 9)): Observe that
9 (20 ) =205 s permitan

— minspec(p) >0, so p > 0 is positive semidefinite

- Tr(p) =Y pk =1



Quantum probability: mathematical background

Properties of an inner product:

) (19),19)) >0
() (19),19)) =0 [9) =0
(i) (1), [w)) = ([w).19)):

) (% A19) +ulw)) = A(s[9) +
(s w)).

IV

Measurement in quantum mechanics

Any quantum system is in some |¢) € 2 with

(9]9)=1

Any measurement on the system

— corresponds to a Hermitian operatorfl, and

— the possible outcomes are the eigenvalues 1 € spec(A).



Quantum probability: measurements as options

Consider a quantum system whose unknown state |¥) lives in an n-
dimensional complex Hilbert state space .2, so

|¥) € £ and (¥|¥) = 1.

Any measurement corresponds to some A, and its
outcome is . Its reward is the measurement outcome.

All measurements constitute a real n>-dimensional Hilbert space 7,
with (Frobenius) inner product

(A,B) :=Tr(A'B) = Tr(AB), forall A,B € 7,

corresponding (Frobenius) norm

1Al =/ (A,4) = \/Tr(AIA) for all A € 2,

and unit measurement 1, == 1.



Quantum probability: background ordering

The background ordering >
is the strict vector ordering on 77 that is always there, regardless of
what You may believe or prefer:

it represents

EXERCISE 3: What is Your set of desirable measurements D under
complete ignorance?



Quantum probability: background ordering

The background ordering >

is the strict vector ordering on 7 that is always there, regardless of
what You may believe or prefer:
it represents

EXERCISE 3: What is Your set of desirable measurements D under
complete ignorance?

A := Your set of accepted measurements

R = Your set of rejected measurements

D := Your set of desirable measurements = AN —R
I := Your set of indifferent measurements = AN —A

NO CONFUSION: ANR = 0.

DESIRABILITY FRAMEWORK: 0 cAand A =DU/l and R = —D.



Quantum probability: background ordering

The one with constants:

u>0=>ulcA
(minspec(A) > pand ul €A) =AcA

minspec(A) >0=AcA

u<0=ulecRr
(maxspec(A) < pand pul €R) =AcR

maxspec(A) < 0= A €R.



Quantum probability: background ordering

The one with constants:

Recall that the Hermitian opera-
torAis

u>0=ulcA
(mlnspec( ) > and ul € A) =AcA

positive semidefinite if
minspec(A) >0,

positive definite if

minspec(A) >0=AcA

pu<0=uleRr
(maxspec( ) < uand ul €R) =AcR

minspec(A) > 0,

and negative definite if
A So:

max spec(A) < 0.

maxspec(A) <0=A € R.

{A € 2 minspec(A) >0} CAand {A € #: maxspec(A)



Quantum probability: background ordering

The one with complete ignorance:

~

Recall that the Hermitian opera- (A € Aand spec(B) C spec(A)) = B €A

torAis As a consequence:

positive semidefinite if R R R
AcA= Al cAforall A € spec(A) [Complete Ignorance]

= Al ¢ Rforall A € spec(A) [No Confusion]
positive definite if = A >0forall A € spec(A [Eq. (3)]
minspec(A) > 0, = minspec(A) > 0

minspec(A) >0,

and negative definite if

A

max spec(A) < 0.



Quantum probability: background ordering

The one with complete ignorance:

Recall that the Hermitian opera- (A € Aand spec(B) C spec(A)) = B €A
torAlis As a consequence:

positive semidefinite if R R R
AcA= Al cAforall A € spec(A) [Complete Ignorance]

- A) >0 . A .
minspec(A) > 0, = Al ¢ Rfor all A € spec(A) [No Confusion]

positive definite if = A>0forall A €spec(d)  [Eq.(3)]
minspec(A) > 0, = minspec(A) > 0
and negative definite if So:
maxspec(4) <0. AC{Ac #: minspec(A) >0} (4)

{A € #: minspec(A) >0} CA



Quantum probability: background ordering

The one with the conclusion:
Combining Egs. (3) and (4) with No Confusion yields:

Recall that the Hermitian opera- ~ . ~
torAis A= {A: minspec(A) >0}

positive semidefinite if {A: maxspec(A) <0} CRC {A: minspec(A) < 0}

—A={A: maxspec(A) <0}
{A: minspec(A) >0} C —R C {A: maxspec(A) > 0}

minspec(A) >0,

positive definite if
{A: minspec(A) >0} C D C {A: minspec(A) >0and A # 0}

1={0}.

minspec(A) > 0,

and negative definite if

A

max spec(A) < 0.



Quantum probability: background ordering

The one with the conclusion:
Combining Egs. (3) and (4) with No Confusion yields:

Recall that the Hermitian opera- ~ . ~
torAis A= {A: minspec(A) >0}

positive semidefinite if {A: maxspec(A) <0} CRC {A: minspec(A) < 0}

—A = {A: maxspec(A) <0}
{A: minspec(A) >0} C —R C {A: maxspec(A) > 0}

minspec(A) >0,

positive definite if

{A: minspec(A) >0} C D C {A: minspec(A) >0and A # 0}
1={0}.

In the , the only remaining possibility is

minspec(A) > 0,

and negative definite if

A

max spec(A) < 0.

D={Ac . minspec(A) >0and A #0} and I = {0},

SO

A = 0 < minspec(A) >0and A # 0.



Quantum probability: background ordering

EXERCISE 4: What is vacuous lower prevision Inf._ that corresponds
to this background ordering > ?



Quantum probability: background ordering

EXERCISE 4: What is vacuous lower prevision Inf._ that corresponds
to this background ordering > ?

Inf, A = sup{a € R: A— al >~ 0}
= sup{a € R: minspec(A —al) >0and A # al}
= sup{a € R: minspec(A) > o and A # al}
= minspec(A).

and therefore the background ordering > is also the
> of our more general context.



Quantum probability: coherent previsions

The coherent previsions on ¢
are the real functionals P: .77 — R that are:

- in the sense that
P(AA+uB) = AP(A)+uP(B) forall A,B € .2 and A,u € R;
- in the sense that

minspec(A) < P(A) < maxspec(A) for all A € 7.



Quantum probability: coherent previsions

The one with linearity:

By the , there is some unique Bp € .77
such that
P(A) = (Bp,A) = Tr(BpA) forall A € 7.



Quantum probability: coherent previsions

Recall that a density operator p is
a positive semidefinite Hermitian
operator such that Trp = 1.

The one with linearity:

By the Riesz Representation Theorem, there is some unique Bp € 7
such that

P(A) = (Bp,A) =Tr(BpA) forall A € 7.

The one with boundedness:
EXERCISE 5: Show that Bp is a density operator.



Quantum probability: coherent previsions

Recall that a density operator p is
a positive semidefinite Hermitian
operator such that Trp = 1.

The one with linearity:

By the , there is some unique Bp € 7
such that
P(A) = (Bp,A) = Tr(BpA) forall A € 7.

The one with boundedness:
EXERCISE 5: Show that Bp is a density operator.

The one going backwards:

HOMEWORK EXERCISE C: Show that A ~— Tr(pA) is a coherent
prevision for any density operator p.



Quantum probability: coherent previsions

Conclusion: Born’s rule

There is a one-to-one correspondence between coherent previsions P
and density operators p, with

P(A) = Tr(pA) forall A € 2.

Recall that a density operator p is
a positive semidefinite Hermitian
operator such that Trp = 1.



CONCLUSIONS



Probability theory (in the form of desirability) is a deductive infer-
ence system, provided we allow for

probability = linearity + background ordering.

the difference between classical and quantum probability lies

the connection between classical and quantum probability is deep-
rooted, and stares you in the face as soon as you have the right
language to express probabilities in.

what the background ordering is, is determined by what it means
to be completely ignorant, and therefore also by the ° " of
the problem.

working with sets of desirable measurements =

working with sets of density operators =
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We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules.
These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum
setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is
quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies
that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics
as probability rules: Bayes’ rule (measurement), marginalization (partial tracing), independence (tensor product).
To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.
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