Imprecise-probabilistic processes - Part II

from a financial mathematical perspective

Michael Kupper

SIPTA School 2024 Ghent University, August 2024

Contents

1 [Pricing in Financial Markets](#page-2-0)

2 [Imprecise Markov processes](#page-23-0)

- **•** [Semigroup envelope](#page-36-0)
- [Chernoff approximation](#page-50-0)
- ³ [Random walk approximation](#page-61-0)

Asset prices are usually modelled as stochastic processes $(X_t)_{t>0}$.

Asset prices are usually modelled as stochastic processes $(X_t)_{t\geq0}$.

Examples:

▶ Bachelier model:

$$
X_t = X_0 + mt + \sigma B_t,
$$

where $X_0 \in \mathbb{R}$ is the current state, $m \in \mathbb{R}$ is the drift parameter, $\sigma > 0$ is the volatility and $(B_t)_{t>0}$ is a Brownian motion.

Asset prices are usually modelled as stochastic processes $(X_t)_{t\geq0}$.

Examples:

▶ Bachelier model:

$$
X_t = X_0 + mt + \sigma B_t,
$$

where $X_0 \in \mathbb{R}$ is the current state, $m \in \mathbb{R}$ is the drift parameter, $\sigma > 0$ is the volatility and $(B_t)_{t>0}$ is a Brownian motion.

▶ Black Scholes model:

$$
X_t = X_0 \exp \left(\sigma B_t + (m - \frac{1}{2}\sigma^2)t\right),
$$

where $X_0 > 0$ is the current state, $m \in \mathbb{R}$ is the drift parameter, $\sigma > 0$ is the volatility and $(B_t)_{t>0}$ is a Brownian motion.

• Goal: Pricing of a contingent claim

 $H = f(X_T)$

with maturity $T > 0$ and payoff function $f : \mathbb{R} \to \mathbb{R}_+$.

• Goal: Pricing of a contingent claim

 $H = f(X_T)$

with maturity $T > 0$ and payoff function $f : \mathbb{R} \to \mathbb{R}_+$.

- **► European call option** $H = max\{X_T K, 0\}$ with strike price $K \ge 0$.
- **► European put option** $H = max{K X_T, 0}$ with strike price $K \ge 0$.

• Goal: Pricing of a contingent claim

 $H = f(X_T)$

with maturity $T > 0$ and payoff function $f : \mathbb{R} \to \mathbb{R}_+$.

Examples:

- ► European call option $H = max\{X_T K, 0\}$ with strike price $K \geq 0$.
- **► European put option** $H = max{K X_T, 0}$ with strike price $K \ge 0$.

• The seller is interested in the **hedging problem**

$$
\pi + \int_0^T \vartheta_s \, dX_s = H,
$$

where $\pi \in \mathbb{R}_+$ is the fair price and $(\vartheta_s)_{s \in [0,\mathcal{T}]}$ is a replicating portfolio. Here, the stochastic integral $\int_0^T \vartheta_s dX_s$ describes the gains/losses from dynamic trading in the time-interval $[0, T]$.

• Goal: Pricing of a contingent claim

 $H = f(X_T)$

with maturity $T > 0$ and payoff function $f : \mathbb{R} \to \mathbb{R}_+$.

Examples:

- **► European call option** $H = max\{X_T K, 0\}$ with strike price $K \ge 0$.
- **► European put option** $H = max{K X_T, 0}$ with strike price $K > 0$.
- The hedging problem has often no solutions and can be relaxed to the super-hedging problem

$$
\pi + \int_0^T \vartheta_s \, dX_s \ge H,
$$

where $\pi\in\mathbb{R}_+$ is a super-heging price and $(\vartheta_s)_{s\in[0,\mathcal{T}]}$ is a super-replicating portfolio.

• The solution to the hedging problem of a contingent claim $H = f(X_T)$ in the Bachelier model $X_t = X_0 + mt + \sigma B_t$ is given as follows:

- The solution to the hedging problem of a contingent claim $H = f(X_T)$ in the Bachelier model $X_t = X_0 + mt + \sigma B_t$ is given as follows:
- Let $u: [0, T] \times \mathbb{R} \to \mathbb{R}$ be the solution of the *boundary value problem*

$$
\begin{cases} \partial_t u + \frac{1}{2}\sigma^2 \partial_{xx} u = 0 & \text{on } [0, T) \times \mathbb{R} \\ u(T, \cdot) = f & \text{on } \mathbb{R}. \end{cases}
$$

- The solution to the hedging problem of a contingent claim $H = f(X_T)$ in the Bachelier model $X_t = X_0 + mt + \sigma B_t$ is given as follows:
- Let $u: [0, T] \times \mathbb{R} \to \mathbb{R}$ be the solution of the *boundary value problem*

$$
\begin{cases} \partial_t u + \frac{1}{2}\sigma^2 \partial_{xx} u = 0 & \text{on } [0, T) \times \mathbb{R} \\ u(T, \cdot) = f & \text{on } \mathbb{R}. \end{cases}
$$

Under reasonable assumption, its solution u is $C^{1,2}$, and we obtain from Ito's lemma that

$$
H = f(X_T) = u(T, X_T)
$$

= $u(0, X_0) + \int_0^T \partial_x u(s, X_s) dX_s + \int_0^T \partial_t u(s, X_s) + \frac{1}{2} \sigma^2 \partial_{xx} u(s, X_s) ds$
= $u(0, X_0) + \int_0^T \partial_x u(s, X_s) dX_s.$

Hence, $u(0, X_0)$ is the fair price and $\partial_x u(s, X_s)$ is the replicating strategy.

• Solutions of boundary value problems are intrinsically linked to semigroups.

- Solutions of boundary value problems are intrinsically linked to semigroups.
- A semigroup on C_b is a family $(S(t))_{t\geq0}$ of operators $S(t): C_b \to C_b$ such that
	- \blacktriangleright $S(0)f = f$,
	- $\blacktriangleright \;\; S(t+s)f = S(t)\big(S(s)f\big)$ for all $s,t\geq 0,$
	- ▶ some sort of continuity.

Here, $C_{\rm b}$ denotes the space of all bounded continuous functions $f: \mathbb{R} \to \mathbb{R}$.

- Solutions of boundary value problems are intrinsically linked to semigroups.
- A semigroup on C_b is a family $(S(t))_{t\geq0}$ of operators $S(t): C_b \to C_b$ such that
	- \blacktriangleright S(0)f = f.
	- $\blacktriangleright \;\; {\sf S}(t+s)f = {\sf S}(t) \big({\sf S}(s)f\big) \; {\sf for \; all} \; s,t\geq 0,$
	- ▶ some sort of continuity.

Examples:

 \blacktriangleright The heat semigroup is given by

$$
(S(t)f)(x):=E[f(x+B_t)],
$$

where $(B_t)_{t>0}$ is a Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, P).$

- Solutions of boundary value problems are intrinsically linked to semigroups.
- A semigroup on C_b is a family $(S(t))_{t\geq0}$ of operators $S(t): C_b \to C_b$ such that
	- \blacktriangleright S(0)f = f.
	- $\blacktriangleright \;\; {\sf S}(t+s)f = {\sf S}(t) \big({\sf S}(s)f\big) \; {\sf for \; all} \; s,t\geq 0,$
	- ▶ some sort of continuity.

Examples:

 \triangleright The heat semigroup is given by

$$
(S(t)f)(x):=E[f(x+B_t)],
$$

where $(B_t)_{t\geq0}$ is a Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, P).$

▶ More generally, for a Markov process $(X_t^x)_{t\geq 0}$ starting at $X_0^x = x$, the corresponding transition semigroup is defiend by $(S(t)f)(x) := E[f(X_t^x)].$

• The semigroup property of the heat semigroup

 $(S(t)f)(x) := E[f(x+B_t)]$

follows from the tower property of the conditional expectation and the properties of the Brownian motion. Indeed,

$$
(S(t+s)f)(x) = E[f(x+B_{t+s})]
$$

\n
$$
= E\Big[E[f(x+B_t+B_{t+s}-B_t)|\mathcal{F}_t]\Big]
$$

\n
$$
= E\Big[\tilde{E}[f(x+B_t+\tilde{B}_s)]\Big]
$$

\n
$$
= E\Big[(S(s)f)(x+B_t)\Big] = (S(t)(S(s)f))(x),
$$

where $\tilde{B}_s \stackrel{d}{=} B_{t+s} - B_t \sim \mathcal{N}(0,s).$

• The solution of the boundary value problem

$$
\begin{cases} \partial_t u + \frac{1}{2}\sigma^2 \partial_{xx} u = 0 & \text{on } [0, T) \times \mathbb{R} \\ u(T, \cdot) = f & \text{on } \mathbb{R} \end{cases}
$$

is given by

$$
u(t,x)=(S(\tau)f)(x)
$$

for the time reversal $\tau:=\sigma^2(\mathcal{T}-t)$ and $(\mathcal{S}(t))_{t\geq 0}$ is the heat semigroup.

• The solution of the *boundary value problem*

$$
\begin{cases} \partial_t u + \frac{1}{2}\sigma^2 \partial_{xx} u = 0 & \text{on } [0, T) \times \mathbb{R} \\ u(T, \cdot) = f & \text{on } \mathbb{R} \end{cases}
$$

is given by

$$
u(t,x)=(S(\tau)f)(x)
$$

for the time reversal $\tau:=\sigma^2(\mathcal{T}-t)$ and $(\mathcal{S}(t))_{t\geq 0}$ is the heat semigroup.

• In particular, the fair price π in the Bachelier model is given by

$$
\pi = u(0, X_0) = (S(\sigma^2 T)f)(X_0) = E[f(X_0 + \sigma B_T)].
$$

Here, we used $B_{\sigma^2T} \stackrel{d}{=} \sigma B_T$.

• The solution of the *boundary value problem*

$$
\begin{cases} \partial_t u + \frac{1}{2}\sigma^2 \partial_{xx} u = 0 & \text{on } [0, T) \times \mathbb{R} \\ u(T, \cdot) = f & \text{on } \mathbb{R} \end{cases}
$$

is given by

$$
u(t,x)=(S(\tau)f)(x)
$$

for the time reversal $\tau:=\sigma^2(\mathcal{T}-t)$ and $(\mathcal{S}(t))_{t\geq 0}$ is the heat semigroup.

• In particular, the fair price π in the Bachelier model is given by

$$
\pi = u(0, X_0) = (S(\sigma^2 T)f)(X_0) = E[f(X_0 + \sigma B_T)].
$$

Here, we used $B_{\sigma^2T} \stackrel{d}{=} \sigma B_T$.

• The fair price strongly depends on the model parameter σ (volatility).

More generally, in actuarial science or financial mathematics, we are interested in expected values of the type

$E[f(X_t^x)].$

- ▶ Fair value of the option f written on the underlying (X_t^x) depending on time to maturity t and the today's state x .
- Expected loss of the random factor X_t^x w.r.t. a loss function f.

More generally, in actuarial science or financial mathematics, we are interested in expected values of the type

$$
E[f(X_t^x)]=\int_{\mathbb{R}}f(y)\,\mu(dy)=(S(t)f)(x).
$$

- ▶ Fair value of the option f written on the underlying (X_t^x) depending on time to maturity t and the today's state x .
- Expected loss of the random factor X_t^x w.r.t. a loss function f.
- In order to compute the expectation, we need to know the distribution μ of (X^\times_t) , or the transition semigroup $(S(t))_{t\geq 0}$ of the Markov process $(X^\times_t)_{t\geq 0}.$

More generally, in actuarial science or financial mathematics, we are interested in expected values of the type

$$
E[f(X_t^x)]=\int_{\mathbb{R}}f(y)\,\mu(dy)=(S(t)f)(x).
$$

- ▶ Fair value of the option f written on the underlying (X_t^x) depending on time to maturity t and the today's state x .
- Expected loss of the random factor X_t^x w.r.t. a loss function f.
- In order to compute the expectation, we need to know the distribution μ of (X^\times_t) , or the transition semigroup $(S(t))_{t\geq 0}$ of the Markov process $(X^\times_t)_{t\geq 0}.$
- However, in most situations, it is **impossible to identify** the precise probability distribution or transition semigroup (model uncertainty might appear due to insufficient data to perform reliable statistical estimations).

A Markov process on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, P)$ is an adapted stochastic process $(X_t)_{t\geq0}$ with

 $P(X_t \in A | \mathcal{F}_s) = P(X_t \in A | X_s)$

for all $s \leq t$ and Borel sets $A \subset \mathbb{R}$.

A Markov process on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, P)$ is an adapted stochastic process $(X_t)_{t\geq0}$ with

 $P(X_t \in A | \mathcal{F}_s) = P(X_t \in A | X_s)$

for all $s \leq t$ and Borel sets $A \subset \mathbb{R}$.

The transition semigroup $(S(t))_{t\geq0}$ of a Markov process is given by

 $(S(t)f)(x) := E\big[f(X_t) | X_0 = x\big]$ for all $f \in C_{\text{b}}$ and $x \in \mathbb{R}$

(note that $S(0)f = f$).

A Markov process on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, P)$ is an adapted stochastic process $(X_t)_{t\geq0}$ with

 $P(X_t \in A | \mathcal{F}_s) = P(X_t \in A | X_s)$

for all $s \leq t$ and Borel sets $A \subset \mathbb{R}$.

• The transition semigroup $(S(t))_{t\geq0}$ of a Markov process is given by

 $(S(t)f)(x) := E\big[f(X_t) | X_0 = x\big]$ for all $f \in C_{\text{b}}$ and $x \in \mathbb{R}$

(note that $S(0)f = f$).

• The local behaviour of the transition semigroup is given by the **generator**

$$
Af = \lim_{h \downarrow 0} \frac{S(h)f - f}{h}
$$

(for those functions for which the limit exists in a reasonable sense).

Under reasonable assumptions there is a one-to-one realtion between

Under reasonable assumptions there is a one-to-one realtion between

• In particular, the solution of the Kolmogorov equation

$$
\begin{cases} \partial_t u = Au & \text{on } [0, T) \times \mathbb{R} \\ u(0, \cdot) = f & \text{on } \mathbb{R} \end{cases}
$$

satisfies

$$
E[f(X_t) | X_0 = x] = (S(t)f)(x) = u(t,x).
$$

Examples:

The solution of the Kolmogorov equation (heat equation)

 $\left\{\n\begin{array}{ll}\n\partial_t u = \frac{1}{2} \partial_{xx} u & \text{on } [0, T) \times \mathbb{R}\n\end{array}\n\right.$ $u(0, \cdot) = f$ on $\mathbb R$

satisfies $E[f(B_t) | B_0 = x] = (S(t)f)(x) = u(t,x)$.

Examples:

1) Brownian motion
\n
$$
\begin{array}{ccc}\n & \text{heat semigroup} & \leftrightarrow \\
 & \leftrightarrow & \\
 & (B_t)_{t\geq 0} & \end{array}\n\begin{array}{ccc}\n & \text{heat semigroup} & \leftrightarrow \\
 & \leftrightarrow & \\
 & (S(t)f)(x) = E\big[f(x+B_t)\big] & \end{array}\n\begin{array}{ccc}\n & \text{generator} & \leftrightarrow \\
 & \leftrightarrow & \\
 & AF = \frac{1}{2}f''\n\end{array}
$$

The solution of the Kolmogorov equation (heat equation)

$$
\begin{cases} \partial_t u = \frac{1}{2} \partial_{xx} u & \text{on } [0, T) \times \mathbb{R} \\ u(0, \cdot) = f & \text{on } \mathbb{R} \end{cases}
$$

satisfies $E[f(B_t) | B_0 = x] = (S(t)f)(x) = u(t,x)$.

2) Markov process modelled as SDE transiton semigroup ↔ $dX_t^x = \mu(X_t^x)dt + \sigma(X_t^x)dB_t$ with $X_0^x = x$ $(S(t)f)(x) = E[f(X_t^x)]$ ↕

$$
generator: Af = \mu f' + \frac{1}{2}\sigma^2 f''
$$

• Recent developments show that the same picture also holds under model uncertainty:

$$
\begin{array}{ccc}\n\textbf{imprecise Markov process} & \textbf{sublinear semigroup} & \textbf{generator} \\
&\longleftrightarrow & (\bar{S}_t)_{t\geq 0} & \bar{A}\n\end{array}
$$

• The solution of the Kolmogorov equation

$$
\left\{\begin{array}{ll}\partial_t u = \bar{A}u & \text{on } [0, T) \times \mathbb{R} \\ u(0, \cdot) = f & \text{on } \mathbb{R}\end{array}\right.
$$

satisfies

$$
\bar{E}[f(X_t) | X_0 = x] = (\bar{S}(t)f)(x) = u(t,x).
$$

Here, \bar{E} is an upper expectation or sublinear expectation.

- Example: G-Brownian motion (S. Peng)
	- \triangleright Starting with the solution of the *G*-heat equation

$$
\begin{cases} \partial_t u = \sup_{\sigma \in [\sigma, \overline{\sigma}]} \frac{\sigma^2}{2} \partial_{xx} u & \text{on } [0, T) \times \mathbb{R} \\ u(0, \cdot) = f & \text{on } \mathbb{R} \end{cases}
$$

for imprecise volatilities in the interval $[\sigma, \overline{\sigma}] \subset \mathbb{R}_+$,

- Example: **G-Brownian motion** (S. Peng)
	- \triangleright Starting with the solution of the *G-heat equation*

$$
\begin{cases} \partial_t u = \sup_{\sigma \in [\sigma, \overline{\sigma}]} \frac{\sigma^2}{2} \partial_{xx} u & \text{on } [0, T) \times \mathbb{R} \\ u(0, \cdot) = f & \text{on } \mathbb{R} \end{cases}
$$

for imprecise volatilities in the interval $[\sigma, \overline{\sigma}] \subset \mathbb{R}_+$, the *G-Brownian motion* $(X_t)_{t>0}$ is the imprecise Markov process with upper transition probabilities

$$
\bar{E}[f(X_t) | X_0 = x] = u(t,x) \text{ for all } f \in C_b.
$$

- Example: **G-Brownian motion** (S. Peng)
	- \triangleright Starting with the solution of the *G-heat equation*

$$
\begin{cases} \n\partial_t u = \sup_{\sigma \in [\underline{\sigma}, \overline{\sigma}]} \frac{\sigma^2}{2} \partial_{xx} u & \text{on } [0, T) \times \mathbb{R} \\ \nu(0, \cdot) = f & \text{on } \mathbb{R} \n\end{cases}
$$

for imprecise volatilities in the interval $[\sigma, \overline{\sigma}] \subset \mathbb{R}_+$, the *G-Brownian motion* $(X_t)_{t\geq0}$ is the imprecise Markov process with upper transition probabilities

$$
\bar{E}[f(X_t) | X_0 = x] = u(t,x) \text{ for all } f \in C_b.
$$

 \triangleright The upper transition probabilities are *G-normally distributed* with mean x and imprecise variance $[t\underline{\sigma}^2, t\overline{\sigma}^2]$.

- Example: **G-Brownian motion** (S. Peng)
	- \triangleright Starting with the solution of the *G-heat equation*

$$
\begin{cases} \partial_t u = \sup_{\sigma \in [\sigma, \overline{\sigma}]} \frac{\sigma^2}{2} \partial_{xx} u & \text{on } [0, T) \times \mathbb{R} \\ u(0, \cdot) = f & \text{on } \mathbb{R} \end{cases}
$$

for imprecise volatilities in the interval $[\sigma, \overline{\sigma}] \subset \mathbb{R}_+$, the *G-Brownian motion* $(X_t)_{t\geq0}$ is the imprecise Markov process with upper transition probabilities

$$
\bar{E}[f(X_t) | X_0 = x] = u(t,x) \text{ for all } f \in C_b.
$$

- \triangleright The upper transition probabilities are *G-normally distributed* with mean x and imprecise variance $[t\underline{\sigma}^2, t\overline{\sigma}^2]$.
- ▶ There exists an upper expectation \bar{E} on the path space $C([0,\infty),\mathbb{R})$ with respective marginal distributions. \rightsquigarrow *G*-expectation.
• Recall that the fair price of a contingent claim $f(X_T)$ with underlying price dynamics modelled by a transition semigroup $(S(t))_{t>0}$ is given by

$$
\pi = E\big[f(X_T) \mid X_0 = x\big] = (S(T)f)(x).
$$

• Recall that the fair price of a contingent claim $f(X_T)$ with underlying price dynamics modelled by a transition semigroup $(S(t))_{t>0}$ is given by

$$
\pi = E\big[f(X_T) \mid X_0 = x\big] = (S(T)f)(x).
$$

Assume there is some aspect of the financial market that cannot be captured in an exact way. \rightsquigarrow We consider a **parameterized family** $(S_{\lambda})_{\lambda \in \Lambda}$ of semigroups with generators $(A_{\lambda})_{\lambda \in \Lambda}$.

• Recall that the fair price of a contingent claim $f(X_T)$ with underlying price dynamics modelled by a transition semigroup $(S(t))_{t>0}$ is given by

$$
\pi = E[f(X_T) | X_0 = x] = (S(T)f)(x).
$$

Assume there is some aspect of the financial market that cannot be captured in an exact way. \rightsquigarrow We consider a **parameterized family** $(S_{\lambda})_{\lambda \in \Lambda}$ of semigroups with generators $(A_{\lambda})_{\lambda \in \Lambda}$.

Example: Consider the family of generators $(A_{\sigma})_{\sigma \in [\sigma,\overline{\sigma}]}$ with $A_{\sigma}f = \frac{\sigma^2}{2}$ $rac{\tau^2}{2}f''$.

• Recall that the **fair price** of a contingent claim $f(X_T)$ with underlying price dynamics modelled by a transition semigroup $(S(t))_{t>0}$ is given by

$$
\pi = E[f(X_T) | X_0 = x] = (S(T)f)(x).
$$

Assume there is some aspect of the financial market that cannot be captured in an exact way. \rightsquigarrow We consider a **parameterized family** $(S_{\lambda})_{\lambda \in \Lambda}$ of semigroups with generators $(A_{\lambda})_{\lambda \in \Lambda}$.

- The goal is to compute "prices" under model uncertainty in a *cautious way*, i.e., we are looking for a family $\big(\bar{S}(t)\big)_{t\geq 0}$ such that, for all $f\in \mathrm{C}_{\mathrm{b}}$,
	- (i) $\bar{S}(0)f = f$.
	- (ii) $\overline{S}(t+s)f = \overline{S}(t)(\overline{S}(s)f)$ for all $s, t > 0$,
	- (iii) $\sup_{\lambda \in \Lambda} S_{\lambda}(t) f \leq \overline{S}(t) f$ for all $t \geq 0$,
	- $\tilde{S}(t)\tilde{f} \leq \tilde{T}(t)f$ for all $t \geq 0$ and every family $(\bar{T}(t))_{t \geq 0}$ satisfying (i) (iii).

• Recall that the **fair price** of a contingent claim $f(X_T)$ with underlying price dynamics modelled by a transition semigroup $(S(t))_{t>0}$ is given by

$$
\pi = E[f(X_T) | X_0 = x] = (S(T)f)(x).
$$

Assume there is some aspect of the financial market that cannot be captured in an exact way. \rightsquigarrow We consider a **parameterized family** $(S_{\lambda})_{\lambda \in \Lambda}$ of semigroups with generators $(A_{\lambda})_{\lambda \in \Lambda}$.

- The goal is to compute "prices" under model uncertainty in a *cautious way*, i.e., we are looking for a family $\big(\bar{S}(t)\big)_{t\geq 0}$ such that, for all $f\in \mathrm{C}_{\mathrm{b}}$,
	- (i) $\bar{S}(0)f = f$. (ii) $\overline{S}(t+s)f = \overline{S}(t)(\overline{S}(s)f)$ for all $s, t > 0$,
	- (iii) sup_{$\lambda \in \Lambda$} $S_{\lambda}(t) f \leq \overline{S}(t) f$ for all $t \geq 0$,
	- $\tilde{S}(t)\tilde{f} \leq \tilde{T}(t)f$ for all $t \geq 0$ and every family $(\bar{T}(t))_{t \geq 0}$ satisfying (i) (iii).
- In other words, $\big(\bar{S}(t)\big)_{t\geq 0}$ is the **semigroup envelope** (Nisio semigroup) of the family $(\bar{S}_{\lambda})_{\lambda \in \Lambda}$.

Let $(S_\lambda)_{\lambda\in\Lambda}$ be a **parameterized family of semigroups** $(S_\lambda(t))_{t\geq 0}$ on C_{b} such that

- \bullet $S_{\lambda}(t)$: $C_{\rm b} \rightarrow C_{\rm b}$ is linear and positive for all $t \geq 0$,
- \bullet $S_{\lambda}(0)f = f$ for all $f \in C_{\rm b}$,
- \bullet $S_{\lambda}(t + s)f = S_{\lambda}(t)(S_{\lambda}(s)f)$ for all $s, t \geq 0$ and $f \in C_{\rm b}$.

Let $(S_{\lambda})_{\lambda \in \Lambda}$ be a parameterized family of semigroups $(S_{\lambda}(t))_{t>0}$ on $C_{\rm b}$.

1) Consider the static optimization problem

$$
I(t)f := \sup_{\lambda \in \Lambda} S_{\lambda}(t)f \quad \text{for all } t \geq 0.
$$

- Let $(S_{\lambda})_{\lambda\in\Lambda}$ be a parameterized family of semigroups $(S_{\lambda}(t))_{t\geq0}$ on $C_{\rm b}$.
	- 1) Consider the static optimization problem

$$
I(t)f := \sup_{\lambda \in \Lambda} S_{\lambda}(t)f \quad \text{for all } t \geq 0.
$$

2) For $t \geq 0$, we use a partition of the time interval [0, t], and optimize after each time step!

 \rightsquigarrow Consider the iterated operator

$$
I(\frac{t}{n})^n f := \underbrace{(I(\frac{t}{n}) \circ \cdots \circ I(\frac{t}{n}))}_{n \text{ times}} f.
$$

Let $(S_{\lambda})_{\lambda \in \Lambda}$ be a parameterized family of semigroups $(S_{\lambda}(t))_{t>0}$ on C_{b} .

1) Consider the static optimization problem

$$
I(t)f := \sup_{\lambda \in \Lambda} S_{\lambda}(t)f \quad \text{for all } t \geq 0.
$$

2) For $t > 0$, we use a partition of the time interval [0, t], and optimize after each time step! \rightarrow Consider the iterated operator

$$
I(\frac{t}{n})^n f := \underbrace{(I(\frac{t}{n}) \circ \cdots \circ I(\frac{t}{n}))}_{n \text{ times}} f.
$$

3) Then, $\bar{S}(t)f := \lim_{n\to\infty} I(\frac{t}{n})^n f$ is the semigroup envelope.

Let $(S_{\lambda})_{\lambda\in\Lambda}$ be a parameterized family of semigroups $(S_{\lambda}(t))_{t\geq0}$ on $C_{\rm b}$.

1) Consider the static optimization problem

$$
I(t)f := \sup_{\lambda \in \Lambda} S_{\lambda}(t)f \quad \text{for all } t \geq 0.
$$

2) For $t > 0$, we use a partition of the time interval [0, t], and optimize after each time step! \rightarrow Consider the iterated operator

$$
I(\frac{t}{n})^n f := \underbrace{(I(\frac{t}{n}) \circ \cdots \circ I(\frac{t}{n}))}_{n \text{ times}} f.
$$

3) Then, $\bar{S}(t)f := \lim_{n\to\infty} I(\frac{t}{n})^n f$ is the semigroup envelope.

4) Under reasonable assumptions, the generator $\bar{A}f := \lim_{h \downarrow 0} \frac{\bar{S}(h)f - f}{h}$ $\frac{1}{h}$ is given by

$$
\bar{A}f = \sup_{\lambda \in \Lambda} A_{\lambda}f.
$$

• Example: G-Brownian motion

 \blacktriangleright Let $(S_\sigma(t)f)(x) = E\big[f(x+\sigma B_t)\big]$ be the heat semigroup with volatility $\sigma \geq 0.$

- **Example: G-Brownian motion**
	- \blacktriangleright Let $(S_\sigma(t)f)(x) = E\big[f(x+\sigma B_t)\big]$ be the heat semigroup with volatility $\sigma \geq 0.$

 \blacktriangleright Then.

$$
(I(t)f)(x) = \sup_{\sigma \in [\underline{\sigma}, \overline{\sigma}]} E\big[f(x + \sigma B_t)\big]
$$

describes the static upper transition probabilities with imprecise volatility.

Note that $I(t)$: $C_b \to C_b$ satisfies for every $f, g \in C_b$ and $c \in \mathbb{R}$,

(i) $I(t)c = c$,

(ii)
$$
f \leq g
$$
 implies $I(t)f \leq I(t)g$,

$$
(iii) I(t)(f+g) \leq I(t)f + I(t)g,
$$

i.e., the upper transition probability given by $f \mapsto (I(t)f)(x)$ is an upper expectation conditioned on the state x.

• Example: G-Brownian motion

 \blacktriangleright Let $(S_\sigma(t)f)(x) = E\big[f(x+\sigma B_t)\big]$ be the heat semigroup with volatility $\sigma \geq 0.$

 \blacktriangleright Then,

$$
(I(t)f)(x) = \sup_{\sigma \in [\underline{\sigma}, \overline{\sigma}]} E\big[f(x + \sigma B_t)\big]
$$

describes the static upper transition probabilities with imprecise volatility.

 \blacktriangleright The semigroup envelope

$$
\bar{S}(t)f = \lim_{n \to \infty} I(\frac{t}{n})^n f
$$

results in the transition semigroup of the G-Brownian motion with generator

$$
\bar{A}f = \sup_{\sigma \in [\underline{\sigma}, \overline{\sigma}]} \frac{\sigma^2}{2} f''.
$$

Chernoff approximation

• The construction of the semigroup envelope strongly relies on the fact that the approximation

 $I(\frac{t}{n})^n f \nearrow S(t) f$ is increasing in *n*.

• The construction of the semigroup envelope strongly relies on the fact that the approximation

 $I(\frac{t}{n})^n f \nearrow S(t) f$ is increasing in *n*.

If $(I(t))_{t\geq0}$ models the upper transition probabilities of a discrete-time imprecise Markov process $(X_{kt})_{k\in\mathbb{N}_0}$, the approximation is often not increasing. However, by relying on compactness arguments, under reasonable assumptions, one can still show that $\bar{S}(t)f := \lim_{n \to \infty} I(\frac{t}{n})^n f$ exists.

• The construction of the semigroup envelope strongly relies on the fact that the approximation

 $I(\frac{t}{n})^n f \nearrow S(t) f$ is increasing in *n*.

• If $(I(t))_{t\geq0}$ models the upper transition probabilities of a discrete-time imprecise Markov process $(X_{kt})_{k\in\mathbb{N}_0}$, the approximation is often not increasing. However, by relying on compactness arguments, under reasonable assumptions, one can still show that $\bar{S}(t)f := \lim_{n \to \infty} I(\frac{t}{n})^n f$ exists.

• Examples:

▶ Random Walk:

$$
(I(t)f)(x) = E[f(x + \sqrt{t}\xi)],
$$

where $P(\xi = \pm 1) = \frac{1}{2}$.

• The construction of the semigroup envelope strongly relies on the fact that the approximation

 $I(\frac{t}{n})^n f \nearrow S(t) f$ is increasing in *n*.

• If $(I(t))_{t\geq0}$ models the upper transition probabilities of a discrete-time imprecise Markov process $(X_{kt})_{k\in\mathbb{N}_0}$, the approximation is often not increasing. However, by relying on compactness arguments, under reasonable assumptions, one can still show that $\bar{S}(t)f := \lim_{n \to \infty} I(\frac{t}{n})^n f$ exists.

Examples:

▶ Random Walk:

$$
(I(t)f)(x) = E[f(x + \sqrt{t}\xi)],
$$

where $P(\xi = \pm 1) = \frac{1}{2}$.

 \triangleright Random Walk (with imprecise variance):

$$
(I(t)f)(x) = \bar{E}[f(x+\sqrt{t}\xi)] := \sup_{\sigma \in [\underline{\sigma}, \overline{\sigma}]} E^{\sigma}[f(x+\sqrt{t}\xi)],
$$

where $P^{\sigma}(\xi = \pm \sigma) = \frac{1}{2}$.

• The construction of the semigroup envelope strongly relies on the fact that the approximation

 $I(\frac{t}{n})^n f \nearrow S(t) f$ is increasing in *n*.

- If $(I(t))_{t\geq0}$ models the upper transition probabilities of a discrete-time imprecise Markov process $(X_{kt})_{k\in\mathbb{N}_0}$, the approximation is often not increasing. However, by relying on compactness arguments, under reasonable assumptions, one can still show that $\bar{S}(t)f := \lim_{n \to \infty} I(\frac{t}{n})^n f$ exists.
- Examples:
	- \triangleright Random Walk (with imprecise variance):

 $(I(t) f)(x) = \bar{E}[f(x + \sqrt{t}\xi)] := \sup_{\sigma \in [\underline{\sigma}, \overline{\sigma}]} E^{\sigma}[f(x + \sqrt{t}\xi)],$

where $P^{\sigma}(\xi = \pm \sigma) = \frac{1}{2}$.

 \blacktriangleright Drift uncertainty:

$$
(I(t)f)(x) = \sup_{\mu} E\big[f(x + \mu(x)t + B_t)\big],
$$

where $B_t \sim N(0, t)$ and the supremum runs over a set of functions $\mu : \mathbb{R} \to \mathbb{R}$.

• Let $(I(t))_{t\geq 0}$ be a family of one step operators $I(t): C_{b} \to C_{b}$. • Iteration for multiple time steps :

Define
$$
I(\frac{t}{n})^n f := \underbrace{(I(\frac{t}{n}) \circ \cdots \circ I(\frac{t}{n}))}_{n \text{ times}} f.
$$

• Let $(I(t))_{t>0}$ be a family of one step operators $I(t): C_b \to C_b$. • Iteration for multiple time steps :

Define
$$
I(\frac{t}{n})^n f := \underbrace{(I(\frac{t}{n}) \circ \cdots \circ I(\frac{t}{n}))}_{n \text{ times}} f.
$$

- Pass to the continuous time limit $\bar{S}(t)f := \lim_{n \to \infty} I(\frac{t}{n})^n f$.
- **•** Infinitesimal behaviour is given by

$$
I'(0)f = \lim_{h \downarrow 0} \frac{I(h)f - f}{h} \quad \text{for all } f \in C_b^{\infty}.
$$

Assumption

Let $(I(t))_{t\geq0}$ be a family of operators $I(t): C_{\rm b}\to C_{\rm b}$ such that

- $(11) I(0)f = f$,
- (12) $I(t)$ is convex and monotone with $I(t)0 = 0$,
- (I3) $||I(t)f I(t)g||_{\infty} \le e^{\omega t}||f g||_{\infty}$,
- (14) $I(t)$: $\text{Lip}_{b}(r) \rightarrow \text{Lip}_{b}(e^{\omega t}r)$,
- $($ I5) $||I(t)(\tau_x f) \tau_x I(t)f||_{\infty} \leq Lrt|x|$ for $f \in \text{Lip}_{\text{b}}(r)$,
- (16) $I'(0)f$ exists for $f \in C_b^{\infty}$,

 (17) $(I(\frac{t}{n})^n)_{n\in\mathbb{N}}$ is uniformly continuous from above for $t \in [0, T]$.

Here, $\|\cdot\|_{\infty}$ denotes the supremum norm, $(\tau_x f)(y) := f(x + y)$ is the shifted function, $\mathrm{Lip}_\mathrm{b}(r)$ is the set of all *r*-Lipschitz continuous functions, and $\mathrm{C}^\infty_\mathrm{b}$ consists of all functions that have bounded derivatives of all orders.

Theorem (Blessing and K.)

Let $(I(t))_{t\geq0}$ be a family of operators $I(t): C_b \to C_b$ satisfying (11)–(17). Then, there exists a strongly continuous convex monotone semigroup

$$
\bar{S}(t)f := \lim_{n \to \infty} I(\frac{t}{n})^n f \quad \text{for all } t \ge 0 \text{ and } f \in C_{\mathrm{b}}.
$$

Furthermore, the generator is given by

$$
\bar{A}f = I'(0)f = \lim_{h \downarrow 0} \frac{I(h)f - f}{h} \quad \text{for all } f \in C_b^{\infty}.
$$

Let $(J(t))_{t>0}$ be another family of operators satisfying (11)–(17) and denote by $(\bar{T}(t))_{t\geq0}$ the corresponding semigroup. If $I'(0)f = J'(0)f$ for all $f\in C_b^\infty$, then

$$
\bar{S}(t)f = \bar{T}(t)f \quad \text{for all } t \ge 0 \text{ and } f \in C_{\mathrm{b}}.
$$

Convex monotone semigroups

Definition

A strongly continuous convex monotone semigroup $(\bar{S}(t))_{t>0}$ is a family of operators $S(t): C_b \to C_b$ satisfying the following conditions:

 ${\bf D} \;\; \bar{\mathcal{S}}(0)f=f$ and $\bar{\mathcal{S}}(s+t)f=\bar{\mathcal{S}}(s)\big(\bar{\mathcal{S}}(t)f\big)$ for all $s,t\geq 0$ and $f\in \mathrm{C}_{\mathrm{b}},$

$$
\text{•} \ \ \bar{S}(t)f \leq \bar{S}(t)g \ \text{for all} \ \ t\geq 0 \ \text{and} \ f\leq g,
$$

- $\overline{S}(t)(\lambda f + (1 \lambda)g) \leq \lambda \overline{S}(t)f + (1 \lambda)\overline{S}(t)g$ for all $t \geq 0, \lambda \in [0,1]$ and $f, g \in C_{\rm b}$,
- **•** The mapping $t \mapsto \overline{S}(t)f$ is continuous for all $f \in C_{\text{b}}$.

The generator is defined by

$$
D(\bar{A}) \to C_{\mathrm{b}},\ f \mapsto \lim_{h \downarrow 0} \frac{\bar{S}(h)f - f}{h}.
$$

Let $X_t^n = \sum_{i=1}^n \sqrt{\frac{t}{n}} \xi_i$, where ξ_1, ξ_2, \ldots are iid with $P(\xi_k = \pm 1) = \frac{1}{2}$.

Let $X_t^n = \sum_{i=1}^n \sqrt{\frac{t}{n}} \xi_i$, where ξ_1, ξ_2, \ldots are iid with $P(\xi_k = \pm 1) = \frac{1}{2}$.

Then, it follows from the central limit theorem (CLT) that

$$
\lim_{n\to\infty} E\big[f(X_t^n)\big]=E\big[f(B_t)\big]\quad\text{for all }f\in\mathrm{C}_{\mathrm{b}},
$$

where $B_t \sim N(0, t)$.

• Instead of relying on the CLT, we argue using the Chernoff approximation. To that end, we consider the transition probabilities of the random walk

> $(I(t)f)(x) = E[f(x +$ √ $[t\xi_1]$

and the transition probabilities of the Brownian motion (heat semigroup)

 $(J(t)f)(x) = E[f(x + B_t)].$

• Instead of relying on the CLT, we argue using the Chernoff approximation. To that end, we consider the transition probabilities of the random walk

> $(I(t)f)(x) = E[f(x +$ √ $[t\xi_1]$

and the transition probabilities of the Brownian motion (heat semigroup)

 $(J(t)f)(x) = E[f(x + B_t)].$

Both $(I(t))_{t\geq0}$ and $(J(t))_{t\geq0}$ satisfy (11)–(17). Moreover, for $f\in\mathrm{C}^\infty_\mathrm{b}$, it follows from Taylor's theorem that $I'(0) = J'(0) = \frac{1}{2}f''$.

• Instead of relying on the CLT, we argue using the Chernoff approximation. To that end, we consider the transition probabilities of the random walk

> $(I(t)f)(x) = E|f(x +$ √ $t\xi_1$

and the transition probabilities of the Brownian motion (heat semigroup)

 $(J(t)f)(x) = E[f(x + B_t)].$

Both $(I(t))_{t\geq 0}$ and $(J(t))_{t\geq 0}$ satisfy (11)–(17). Moreover, for $f\in \mathrm{C}_\mathrm{b}^\infty$, it follows from Taylor's theorem that $I'(0) = J'(0) = \frac{1}{2}f''$.

Indeed, since $f(x +$ √ $\bar{t}\xi_1$) = $f(x) + f'(x)$ √ $\overline{t}\xi_1+\frac{1}{2}f''(x)t\xi_1^2+o(t)$, we obtain

$$
\left(\frac{I(t)f-f}{t}\right)(x)=\frac{E\left[\frac{1}{2}f''(x)t\xi_1^2\right]+o(t)}{t}\rightarrow\frac{1}{2}f''(x) \text{ for } t\downarrow 0.
$$

• Instead of relying on the CLT, we argue using the Chernoff approximation. To that end, we consider the transition probabilities of the random walk

> $(I(t)f)(x) = E|f(x +$ √ $t\xi_1$

and the transition probabilities of the Brownian motion (heat semigroup)

 $(J(t) f)(x) = E[f(x + B_t)].$

- Both $(I(t))_{t\geq 0}$ and $(J(t))_{t\geq 0}$ satisfy (11)–(17). Moreover, for $f\in \mathrm{C}_\mathrm{b}^\infty$, it follows from Taylor's theorem that $I'(0) = J'(0) = \frac{1}{2}f''$.
- \bullet Hence, we can apply the previous theorem and obtain for every $f \in C_{\rm b}$,

$$
\left(I\left(\frac{t}{n}\right)^n f\right)(0) = E\left[f\left(\sum_{i=1}^n \sqrt{\frac{t}{n}} \xi_i\right)\right] \longrightarrow \left(J(t)f\right)(0) = E\left[f(B_t)\right] \text{ for } n \to \infty,
$$

(note that $J(\frac{t}{n})^n f = J(t)f$ because $(J(t))_{t\geq 0}$ is a semigroup).

EXA Likewise, for the **random walk with imprecise variance** with upper transition probabilities

$$
(I(t)f)(x) = \bar{E}\big[f(x+\sqrt{t}\xi_1)\big] := \sup_{\sigma \in [\underline{\sigma},\overline{\sigma}]} E^{\sigma}\big[f(x+\sqrt{t}\xi_1)\big],
$$

where $P^{\sigma}(\xi_1 = \pm \sigma) = \frac{1}{2}$, we obtain for every $f \in C_{\mathrm{b}}$,

$$
\left(I\left(\frac{t}{n}\right)^nf\right)(0)=\bar{E}\left[f\left(\sum_{i=1}^n\sqrt{\frac{t}{n}}\xi_i\right)\right]\longrightarrow (\bar{S}(t)f)(0)\text{ for }n\to\infty.
$$

Here, $(\bar{S}(t))_{t>0}$ is the transition semigroup of the G-Brownian motion.

EXA Likewise, for the **random walk with imprecise variance** with upper transition probabilities

$$
(I(t)f)(x) = \bar{E}\big[f(x+\sqrt{t}\xi_1)\big] := \sup_{\sigma \in [\underline{\sigma},\overline{\sigma}]} E^{\sigma}\big[f(x+\sqrt{t}\xi_1)\big],
$$

where $P^{\sigma}(\xi_1 = \pm \sigma) = \frac{1}{2}$, we obtain for every $f \in C_{\mathrm{b}}$,

$$
\left(I\left(\frac{t}{n}\right)^{n} f\right)(0) = \bar{E}\left[f\left(\sum_{i=1}^{n} \sqrt{\frac{t}{n}} \xi_{i}\right)\right] \longrightarrow (\bar{S}(t) f)(0) \text{ for } n \to \infty.
$$

Here, $(S(t))_{t\geq0}$ is the transition semigroup of the G-Brownian motion.

• In particular, the distribution of

$$
\sum_{i=1}^n \sqrt{\frac{t}{n}} \xi_i
$$

converges to the G-normal distribution with mean 0 and imprecise variance $[t\underline{\sigma}^2, t\overline{\sigma}^2]$. This is a version of the sublinear CLT of S. Peng.

References

G-Brownian motion and related stochastic calculus

Shige Peng

Nonlinear Expectations and Stochastic Calculus under Uncertainty Volume 95 of Probability Theory and Stochastic Modelling, Springer, Berlin, 2019.

Shige Peng

Multi-dimensional G-Brownian motion and related stochastic calculus under G- expectation. Stochastic Process. Appl., 118(12), 2223-2253, 2008.

Semigroup envelope

Makiko Nisio

On a non-linear semi-group attached to stochastic optimal control. Publications of the Research Institute for Mathematical Sciences (PRIMS), 12(2), 513-537, 1976.

Robert Denk, Michael Kupper, Max Nendel

A semigroup approach to nonlinear Lévy processes. Stochastic Processes and their Applications, 130, 1616-1642, 2020.

Max Nendel and Michael Röckner

Upper envelopes of families of Feller semigroups and viscosity solutions to a class of nonlinear Cauchy problems. SIAM Journal on Control and Optimization 59, 4400-4428, 2021.

Max Nendel

Nonlinear expectations and a semigroup approach to fully nonlinear PDEs PhD thesis, University of Konstanz, 2017.

References

Chernoff approximation

Jonas Blessing and Michael Kupper

Nonlinear semigroups built on generating families and their Lipschitz sets Potential Analysis, 2022.

Jonas Blessing and Michael Kupper

Nonlinear semigroups and limit theorems for convex expectations Preprint, 2022.

Jonas Blessing, Michael Kupper and Max Nendel

Convergence of infinitesimal generators and stability of convex monotone semigroups Preprint, 2023.

Jonas Blessing, Lianzi Jiang, Michael Kupper and Gechun Liang

Convergence rates for Chernoff-type approximations of convex monotone semigroups Preprint, 2023.

Jonas Blessing

Convex monotone semigroups on spaces of continuous functions. PhD thesis, University of Konstanz, 2023.

Relation between Markov processes and their generators

Ben Goldys, Max Nendel and Michael Röckner

Operator semigroups in the mixed topology and the infinitesimal description of Markov processes Preprint, 2022.
References

Convex monotone semigroups

Jonas Blessing, Robert Denk, Michael Kupper, Max Nendel

Convex monotone semigroups and their generators with respect to Γ-convergence Preprint, 2022.

Robert Denk, Michael Kupper, Max Nendel

Convex semigroups on Lp-like spaces. Journal of Evolution Equations, 21(2), 2491-2521, 2021.

Robert Denk, Michael Kupper, Max Nendel

Convex monotone semigroups on lattices of continuous functions. Publications of the Research Institute for Mathematical Sciences (PRIMS), 2023.

Daniel Bartl, Stephan Eckstein, Michael Kupper

Limits of random walks with distributionally robust transition probabilities. Electronic Communications in Probability, 26, 1-13, 2021.

Viscous Hamilton–Jacobi equations in exponential Orlicz hearts Journal de Mathématiques Pures et Appliquées, 2022.

Sven Fuhrmann, Michael Kupper, Max Nendel

Wasserstein perturbations of Markovian transition semigroups. Annales de l'Institut Henri Poincare (B) 59, 904-932, 2023.

References

Continuous-time imprecise Markov processes

Damian Škuli

Efficient computation of the bounds of continuous time imprecise Markov chains Applied mathematics and computation, 250, 165-180, 2015.

Thomas Krak, Jasper De Bock and Arno Siebes

Imprecise continuous-time Markov chains International Journal of Approximate Reasoning, 88, 452-528, 2017.

Alexander Erreygers and Jasper De Bock

Markovian imprecise jump processes: Extension to measurable variables, convergence theorems and algorithms International Journal of Approximate Reasoning, 147, 78-124, 2022.

Alexander Erreygers

Sublinear expectations for countable-state uncertain processes International Symposium on Imprecise Probability: Theories and Applications, 210-221, 2023.

Ariel Neufeld and Marcel Nutz

Nonlinear Lévy processes and their characteristics Transactions of the American Mathematical Society, 369(1), 69-95, 2017.

Tolulope Fadina, Ariel Neufeld and Thorsten Schmidt

Affine processes under parameter uncertainty Probability, uncertainty and quantitative risk, 4, 1-35, 2019.

Franziska Kühn

On infinitesimal generators of sublinear Markov semigroups Osaka Journal of Mathematics, 58(3), 487-508, 2021.

Markov selections and Feller properties of nonlinear diffusions Stochastic Processes and their Applications, 173, 104354, 2024.

Thank you