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Pricing in Financial Markets

Asset prices are usually modelled as stochastic processes (Xt)t≥0.

Examples:
▶ Bachelier model:

Xt = X0 +mt + σBt ,

where X0 ∈ R is the current state, m ∈ R is the drift parameter, σ > 0 is the
volatility and (Bt)t≥0 is a Brownian motion.

▶ Black Scholes model:

Xt = X0 exp
(
σBt + (m − 1

2
σ2)t

)
,

where X0 > 0 is the current state, m ∈ R is the drift parameter, σ > 0 is the
volatility and (Bt)t≥0 is a Brownian motion.
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Pricing in Financial Markets

Goal: Pricing of a contingent claim

H = f (XT )

with maturity T > 0 and payoff function f : R → R+.

Examples:

▶ European call option H = max{XT − K , 0} with strike price K ≥ 0.

▶ European put option H = max{K − XT , 0} with strike price K ≥ 0.
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Goal: Pricing of a contingent claim

H = f (XT )

with maturity T > 0 and payoff function f : R → R+.

Examples:

▶ European call option H = max{XT − K , 0} with strike price K ≥ 0.

▶ European put option H = max{K − XT , 0} with strike price K ≥ 0.

The seller is interested in the hedging problem

π +

∫ T

0

ϑs dXs = H,

where π ∈ R+ is the fair price and (ϑs)s∈[0,T ] is a replicating portfolio.

Here, the stochastic integral
∫ T

0
ϑs dXs describes the gains/losses from

dynamic trading in the time-interval [0,T ].
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Goal: Pricing of a contingent claim

H = f (XT )

with maturity T > 0 and payoff function f : R → R+.

Examples:

▶ European call option H = max{XT − K , 0} with strike price K ≥ 0.

▶ European put option H = max{K − XT , 0} with strike price K ≥ 0.

The hedging problem has often no solutions and can be relaxed to the
super-hedging problem

π +

∫ T

0

ϑs dXs ≥ H,

where π ∈ R+ is a super-heging price and (ϑs)s∈[0,T ] is a super-replicating
portfolio.
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Pricing in Financial Markets

The solution to the hedging problem of a contingent claim H = f (XT ) in the
Bachelier model Xt = X0 +mt + σBt is given as follows:

Let u : [0,T ]× R → R be the solution of the boundary value problem{
∂tu + 1

2σ
2∂xxu = 0 on [0,T )× R

u(T , ·) = f on R.

Under reasonable assumption, its solution u is C 1,2, and we obtain from Ito’s
lemma that

H = f (XT ) = u(T ,XT )

= u(0,X0) +

∫ T

0

∂xu(s,Xs) dXs +

∫ T

0

∂tu(s,Xs) +
1

2
σ2∂xxu(s,Xs) ds

= u(0,X0) +

∫ T

0

∂xu(s,Xs) dXs .

Hence, u(0,X0) is the fair price and ∂xu(s,Xs) is the replicating strategy.
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Pricing in Financial Markets

Solutions of boundary value problems are intrinsically linked to semigroups.

A semigroup on Cb is a family (S(t))t≥0 of operators S(t) : Cb → Cb such
that

▶ S(0)f = f ,
▶ S(t + s)f = S(t)

(
S(s)f

)
for all s, t ≥ 0,

▶ some sort of continuity.

Examples:

▶ The heat semigroup is given by(
S(t)f

)
(x) := E

[
f (x + Bt)

]
,

where (Bt)t≥0 is a Brownian motion on a filtered probability space
(Ω,F , (Ft)t≥0,P).

▶ More generally, for a Markov process (X x
t )t≥0 starting at X x

0 = x , the
corresponding transition semigroup is defiend by

(
S(t)f

)
(x) := E

[
f (X x

t )
]
.
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Pricing in Financial Markets

The semigroup property of the heat semigroup(
S(t)f

)
(x) := E

[
f (x + Bt)

]
follows from the tower property of the conditional expectation and the
properties of the Brownian motion. Indeed,(

S(t + s)f
)
(x) = E

[
f (x + Bt+s)

]
= E

[
E
[
f (x + Bt + Bt+s − Bt)

∣∣Ft

]]
= E

[
Ẽ
[
f (x + Bt + B̃s)

]]
= E

[(
S(s)f )(x + Bt)

]
=

(
S(t)

(
S(s)f

))
(x),

where B̃s
d
= Bt+s − Bt ∼ N (0, s).
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Pricing in Financial Markets

The solution of the boundary value problem{
∂tu + 1

2σ
2∂xxu = 0 on [0,T )× R

u(T , ·) = f on R

is given by
u(t, x) =

(
S(τ)f

)
(x)

for the time reversal τ := σ2(T − t) and (S(t))t≥0 is the heat semigroup.

In particular, the fair price π in the Bachelier model is given by

π = u(0,X0) =
(
S(σ2T )f

)
(X0) = E

[
f (X0 + σBT )].

Here, we used Bσ2T
d
= σBT .

The fair price strongly depends on the model parameter σ (volatility).
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Pricing in Financial Markets

More generally, in actuarial science or financial mathematics, we are
interested in expected values of the type

E [f (X x
t )].

Examples:

▶ Fair value of the option f written on the underlying (X x
t ) depending on time

to maturity t and the today’s state x .

▶ Expected loss of the random factor X x
t w.r.t. a loss function f .

In order to compute the expectation, we need to know the distribution µ of
(X x

t ), or the transition semigroup (S(t))t≥0 of the Markov process (X x
t )t≥0.

However, in most situations, it is impossible to identify the precise
probability distribution or transition semigroup (model uncertainty might
appear due to insufficient data to perform reliable statistical estimations).
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Imprecise Markov processes
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Markov processes

A Markov process on a filtered probability space (Ω,F , (Ft)t≥0,P) is an
adapted stochastic process (Xt)t≥0 with

P
(
Xt ∈ A | Fs

)
= P

(
Xt ∈ A | Xs)

for all s ≤ t and Borel sets A ⊂ R.

The transition semigroup (S(t))t≥0 of a Markov process is given by(
S(t)f

)
(x) := E

[
f (Xt) | X0 = x ] for all f ∈ Cb and x ∈ R

(note that S(0)f = f ).

The local behaviour of the transition semigroup is given by the generator

Af = lim
h↓0

S(h)f − f

h

(for those functions for which the limit exists in a reasonable sense).
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Markov processes

Under reasonable assumptions there is a one-to-one realtion between

Markov process transition semigroup generator
↔ ↔

(Xt)t≥0

(
S(t)

)
t≥0

A
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Markov processes

Under reasonable assumptions there is a one-to-one realtion between

Markov process transition semigroup generator
↔ ↔

(Xt)t≥0

(
S(t)

)
t≥0

A

In particular, the solution of the Kolmogorov equation{
∂tu = Au on [0,T )× R
u(0, ·) = f on R

satisfies
E
[
f (Xt) | X0 = x

]
=

(
S(t)f

)
(x) = u(t, x).

Michael Kupper Imprecise-probabilistic processes August 2024 12 / 34



Markov processes
Examples:

1) Brownian motion heat semigroup generator
↔ ↔

(Bt)t≥0 (S(t)f )(x) = E
[
f (x + Bt)

]
Af = 1

2 f
′′

The solution of the Kolmogorov equation (heat equation){
∂tu = 1

2∂xxu on [0,T )× R
u(0, ·) = f on R

satisfies E
[
f (Bt) | B0 = x

]
=

(
S(t)f

)
(x) = u(t, x).

2) Markov process modelled as SDE transiton semigroup
↔

dX x
t = µ(X x

t )dt + σ(X x
t )dBt with X x

0 = x (S(t)f )(x) = E
[
f (X x

t )
]

↕

generator: Af = µf ′ + 1
2σ

2f ′′
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Imprecise Markov processes

Recent developments show that the same picture also holds under model
uncertainty:

imprecise Markov process sublinear semigroup generator
↔ ↔

(Xt)t≥0 (S̄t)t≥0 Ā

The solution of the Kolmogorov equation{
∂tu = Āu on [0,T )× R
u(0, ·) = f on R

satisfies
Ē
[
f (Xt) | X0 = x

]
=

(
S̄(t)f

)
(x) = u(t, x).

Here, Ē is an upper expectation or sublinear expectation.
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Imprecise Markov processes

Example: G-Brownian motion (S. Peng)
▶ Starting with the solution of the G-heat equation{

∂tu = supσ∈[σ,σ]
σ2

2
∂xxu on [0,T )× R

u(0, ·) = f on R

for imprecise volatilities in the interval [σ, σ] ⊂ R+,

the G-Brownian motion
(Xt)t≥0 is the imprecise Markov process with upper transition probabilities

Ē
[
f (Xt) | X0 = x

]
= u(t, x) for all f ∈ Cb.

▶ The upper transition probabilities are G-normally distributed with mean x and
imprecise variance [tσ2, tσ2].

▶ There exists an upper expectation Ē on the path space C([0,∞),R) with
respective marginal distributions. ⇝ G-expectation.
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Semigroup envelope
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Semigroup envelope

Recall that the fair price of a contingent claim f (XT ) with underlying price
dynamics modelled by a transition semigroup (S(t))t≥0 is given by

π = E
[
f (XT ) | X0 = x

]
=

(
S(T )f

)
(x).

Assume there is some aspect of the financial market that cannot be captured
in an exact way. ⇝ We consider a parameterized family (Sλ)λ∈Λ of
semigroups with generators (Aλ)λ∈Λ.

The goal is to compute “prices” under model uncertainty in a cautious way,
i.e., we are looking for a family

(
S̄(t)

)
t≥0

such that, for all f ∈ Cb,

(i) S̄(0)f = f ,
(ii) S̄(t + s)f = S̄(t)(S̄(s)f ) for all s, t ≥ 0,
(iii) supλ∈Λ Sλ(t)f ≤ S̄(t)f for all t ≥ 0,
(iv) S̄(t)f ≤ T̄ (t)f for all t ≥ 0 and every family

(
T̄ (t)

)
t≥0

satisfying (i) - (iii).

In other words,
(
S̄(t)

)
t≥0

is the semigroup envelope (Nisio semigroup) of

the family (S̄λ)λ∈Λ.
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Construction of the semigroup envelope

Let (Sλ)λ∈Λ be a parameterized family of semigroups (Sλ(t))t≥0 on Cb

.

such
that

Sλ(t) : Cb → Cb is linear and positive for all t ≥ 0,

Sλ(0)f = f for all f ∈ Cb,

Sλ(t + s)f = Sλ(t)(Sλ(s)f ) for all s, t ≥ 0 and f ∈ Cb.

1) Consider the static optimization problem

I (t)f := sup
λ∈Λ

Sλ(t)f for all t ≥ 0.

2) For t ≥ 0, we use a partition of the time interval [0, t], and optimize after
each time step! ⇝ Consider the iterated operator

I ( tn )
nf := (I ( tn ) ◦ · · · ◦ I (

t
n ))︸ ︷︷ ︸

n times

f .

3) Then, S̄(t)f := limn→∞ I ( tn )
nf is the semigroup envelope.

4) Under reasonable assumptions, the generator Āf := limh↓0
S̄(h)f−f

h is given by

Āf = sup
λ∈Λ

Aλf .
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Āf = sup
λ∈Λ

Aλf .

Michael Kupper Imprecise-probabilistic processes August 2024 18 / 34



Construction of the semigroup envelope

Let (Sλ)λ∈Λ be a parameterized family of semigroups (Sλ(t))t≥0 on Cb.

such
that

Sλ(t) : Cb → Cb is linear and positive for all t ≥ 0,
Sλ(0)f = f for all f ∈ Cb,
Sλ(t + s)f = Sλ(t)(Sλ(s)f ) for all s, t ≥ 0 and f ∈ Cb.

1) Consider the static optimization problem

I (t)f := sup
λ∈Λ

Sλ(t)f for all t ≥ 0.

2) For t ≥ 0, we use a partition of the time interval [0, t], and optimize after
each time step!

𝟎
𝒕
𝒏

𝟐𝒕
𝒏

𝒏 − 𝟏 𝒕
𝒏

𝒕…

…

𝑰
𝒕
𝒏

𝑰
𝒕
𝒏 𝑰

𝒕
𝒏

⇝ Consider the iterated operator

I ( tn )
nf := (I ( tn ) ◦ · · · ◦ I (

t
n ))︸ ︷︷ ︸

n times

f .

3) Then, S̄(t)f := limn→∞ I ( tn )
nf is the semigroup envelope.

4) Under reasonable assumptions, the generator Āf := limh↓0
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Semigroup envelope

Example: G-Brownian motion

▶ Let (Sσ(t)f )(x) = E
[
f (x + σBt)

]
be the heat semigroup with volatility σ ≥ 0.

▶ Then, (
I (t)f

)
(x) = sup

σ∈[σ,σ]

E
[
f (x + σBt)

]
describes the static upper transition probabilities with imprecise volatility.

▶ The semigroup envelope
S̄(t)f = lim

n→∞
I ( t

n
)nf

results in the transition semigroup of the G -Brownian motion with generator

Āf = sup
σ∈[σ,σ]

σ2

2
f ′′.
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Chernoff approximation
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Chernoff-type approximations
The construction of the semigroup envelope strongly relies on the fact that
the approximation

I ( tn )
nf ↗ S(t)f is increasing in n.

If (I (t))t≥0 models the upper transition probabilities of a discrete-time
imprecise Markov process (Xkt)k∈N0 , the approximation is often not
increasing. However, by relying on compactness arguments, under reasonable
assumptions, one can still show that S̄(t)f := limn→∞ I ( tn )

nf exists.

Examples:

▶ Random Walk (with imprecise variance):(
I (t)f

)
(x) = Ē

[
f (x +

√
tξ)

]
:= sup

σ∈[σ,σ]

Eσ[f (x +
√
tξ)

]
,

where Pσ(ξ = ±σ) = 1
2
.

▶ Drift uncertainty: (
I (t)f

)
(x) = sup

µ
E
[
f (x + µ(x)t + Bt)

]
,

where Bt ∼ N(0, t) and the supremum runs over a set of functions µ : R → R.
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Chernoff-type approximations

Let (I (t))t≥0 be a family of one step operators I (t) : Cb → Cb.

Iteration for multiple time steps :

𝟎
𝒕
𝒏

𝟐𝒕
𝒏

𝒏 − 𝟏 𝒕
𝒏

𝒕…

…

𝑰
𝒕
𝒏

𝑰
𝒕
𝒏 𝑰

𝒕
𝒏

Define I ( tn )
nf := (I ( tn ) ◦ · · · ◦ I (

t
n ))︸ ︷︷ ︸

n times

f .

Pass to the continuous time limit S̄(t)f := limn→∞ I ( tn )
nf .

Infinitesimal behaviour is given by

I ′(0)f = lim
h↓0

I (h)f − f

h
for all f ∈ C∞

b .

Michael Kupper Imprecise-probabilistic processes August 2024 22 / 34



Chernoff-type approximations

Let (I (t))t≥0 be a family of one step operators I (t) : Cb → Cb.

Iteration for multiple time steps :

𝟎
𝒕
𝒏

𝟐𝒕
𝒏

𝒏 − 𝟏 𝒕
𝒏

𝒕…

…

𝑰
𝒕
𝒏

𝑰
𝒕
𝒏 𝑰

𝒕
𝒏

Define I ( tn )
nf := (I ( tn ) ◦ · · · ◦ I (

t
n ))︸ ︷︷ ︸

n times

f .

Pass to the continuous time limit S̄(t)f := limn→∞ I ( tn )
nf .

Infinitesimal behaviour is given by

I ′(0)f = lim
h↓0

I (h)f − f

h
for all f ∈ C∞

b .

Michael Kupper Imprecise-probabilistic processes August 2024 22 / 34



Chernoff-type approximations

Assumption

Let (I (t))t≥0 be a family of operators I (t) : Cb → Cb such that

(I1) I (0)f = f ,

(I2) I (t) is convex and monotone with I (t)0 = 0,

(I3) ∥I (t)f − I (t)g∥∞ ≤ eωt∥f − g∥∞,

(I4) I (t) : Lipb(r) → Lipb(e
ωtr),

(I5) ∥I (t)(τx f )− τx I (t)f ∥∞ ≤ Lrt|x | for f ∈ Lipb(r),

(I6) I ′(0)f exists for f ∈ C∞
b ,

(I7) (I ( tn )
n)n∈N is uniformly continuous from above for t ∈ [0,T ].

Here, ∥ · ∥∞ denotes the supremum norm, (τx f )(y) := f (x + y) is the shifted
function, Lipb(r) is the set of all r -Lipschitz continuous functions, and C∞

b

consists of all functions that have bounded derivatives of all orders.
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Chernoff-type approximations

Theorem (Blessing and K.)

Let (I (t))t≥0 be a family of operators I (t) : Cb → Cb satisfying (I1)–(I7). Then,
there exists a strongly continuous convex monotone semigroup

S̄(t)f := lim
n→∞

I ( tn )
nf for all t ≥ 0 and f ∈ Cb.

Furthermore, the generator is given by

Āf = I ′(0)f = lim
h↓0

I (h)f − f

h
for all f ∈ C∞

b .

Let (J(t))t≥0 be another family of operators satisfying (I1)–(I7) and denote by
(T̄ (t))t≥0 the corresponding semigroup. If I ′(0)f = J ′(0)f for all f ∈ C∞

b , then

S̄(t)f = T̄ (t)f for all t ≥ 0 and f ∈ Cb.
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Convex monotone semigroups

Definition

A strongly continuous convex monotone semigroup (S̄(t))t≥0 is a family of
operators S̄(t) : Cb → Cb satisfying the following conditions:

1 S̄(0)f = f and S̄(s + t)f = S̄(s)
(
S̄(t)f

)
for all s, t ≥ 0 and f ∈ Cb,

2 S̄(t)f ≤ S̄(t)g for all t ≥ 0 and f ≤ g ,

3 S̄(t)(λf + (1− λ)g) ≤ λS̄(t)f + (1− λ)S̄(t)g for all t ≥ 0, λ ∈ [0, 1] and
f , g ∈ Cb,

4 The mapping t 7→ S̄(t)f is continuous for all f ∈ Cb.

The generator is defined by

D(Ā) → Cb, f 7→ lim
h↓0

S̄(h)f − f

h
.
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Random walk approximation

Let X n
t =

∑n
i=1

√
t
n ξi , where ξ1, ξ2, . . . are iid with P(ξk = ±1) = 1

2 .

Then, it follows from the central limit theorem (CLT) that

lim
n→∞

E
[
f (X n

t )
]
= E

[
f (Bt)

]
for all f ∈ Cb,

where Bt ∼ N(0, t).
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Random walk approximation

Instead of relying on the CLT, we argue using the Chernoff approximation.
To that end, we consider the transition probabilities of the random walk(

I (t)f
)
(x) = E

[
f (x +

√
tξ1

]
and the transition probabilities of the Brownian motion (heat semigroup)(

J(t)f
)
(x) = E

[
f (x + Bt)

]
.

Both (I (t))t≥0 and (J(t))t≥0 satisfy (I1)–(I7). Moreover, for f ∈ C∞
b , it

follows from Taylor’s theorem that I ′(0) = J ′(0) = 1
2 f

′′.
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)
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f (x + Bt)

]
.

Both (I (t))t≥0 and (J(t))t≥0 satisfy (I1)–(I7). Moreover, for f ∈ C∞
b , it

follows from Taylor’s theorem that I ′(0) = J ′(0) = 1
2 f

′′.

Indeed, since f (x +
√
tξ1) = f (x) + f ′(x)

√
tξ1 +

1
2 f

′′(x)tξ21 + o(t), we obtain(
I (t)f − f

t

)
(x) =

E
[
1
2 f

′′(x)tξ21
]
+ o(t)

t
→ 1

2 f
′′(x) for t ↓ 0.
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Random walk approximation

Instead of relying on the CLT, we argue using the Chernoff approximation.
To that end, we consider the transition probabilities of the random walk(

I (t)f
)
(x) = E

[
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tξ1

]
and the transition probabilities of the Brownian motion (heat semigroup)(

J(t)f
)
(x) = E

[
f (x + Bt)

]
.

Both (I (t))t≥0 and (J(t))t≥0 satisfy (I1)–(I7). Moreover, for f ∈ C∞
b , it

follows from Taylor’s theorem that I ′(0) = J ′(0) = 1
2 f

′′.

Hence, we can apply the previous theorem and obtain for every f ∈ Cb,

(
I
(
t
n

)n
f
)
(0) = E

[
f
( n∑

i=1

√
t
n ξi

)]
−→

(
J(t)f

)
(0) = E

[
f (Bt)

]
for n → ∞,

(note that J( tn )
nf = J(t)f because (J(t))t≥0 is a semigroup).
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Random walk approximation
Likewise, for the random walk with imprecise variance with upper
transition probabilities(

I (t)f
)
(x) = Ē

[
f (x +

√
tξ1)

]
:= sup

σ∈[σ,σ]

Eσ
[
f (x +

√
tξ1)

]
,

where Pσ(ξ1 = ±σ) = 1
2 , we obtain for every f ∈ Cb,

(
I
(
t
n

)n
f
)
(0) = Ē

[
f
( n∑

i=1

√
t
n ξi

)]
−→

(
S̄(t)f

)
(0) for n → ∞.

Here, (S̄(t))t≥0 is the transition semigroup of the G -Brownian motion.

In particular, the distribution of

n∑
i=1

√
t
n ξi

converges to the G -normal distribution with mean 0 and imprecise variance
[tσ2, tσ2]. This is a version of the sublinear CLT of S. Peng.
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