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Who and why?

2.3 Connection with Classical Propositional Logic

The definition of a coherent set of desirable gambles, and Theorem 1, make clear that infer-
ence with desirable gambles bears a formal resemblance to deduction in classical proposition
logic: D3 is a production axiom that states that positive linear combinations of desirable
gambles are again desirable. The exact correspondences are listed in the following table:

Sets of desirable gambles
avoiding non-positivity
coherent

natural extension

Classical propositional logic
logical consistency
deductively closed

deductive closure

2.1. CLASSICAL PROPOSITIONAL LOGIC

Consider an object language L of well-formed formulae, or sentences, in
classical propositional logic with the usual axiomatisation (see for instance ~
[6, 28]). We call any subset K of L, i.e., any set of sentences, a beliefmodel.l
Intuitively, a set of sentences K models the beliefs of a subject: it contains
those sentences that the subject is certain are true. Of course, this is a very
simple type of model, because it concentrates on certainty, or full belief. We
shall want to study more general models, that are also able to represent a

2.4. Deductive Extension and Deductive Closure

Based on the assumption that the gamble pay-offs are expressed in a linear precise utility scale, statements
acceptance imply other statements, generated by positive scaling and combination: if f is judged acceptable, tt
A f should be as well for all real A > 0; if f and g are judged acceptable, then f +g should be as well. This is call
deductive extension. Deductive extension can be succinctly expressed using the positive linear hull operator pe
which generates convex cones and was introduced in Section 1.4. The assumptions about the utility scale have no dir
consequences for reject statements; their indirect impact will be derived in Section 2.5.

So, starting from an assessment A in A, its deductive extension extp A := (posiAs ;. A<}, which we call a deductiv
closed assessment, can be derived. Deductively closed assessments D satisfy the following rationality axiom:

Axiom DC (Deductive Closure). extpD =D or, equivalently, D,eC,

which can also be expressed as the combination of

Axiom PS (Positive Scaling). A>0AfeD,=A-feD, orequivalently, R.-D,cD,
and
Axiom C (Combination).  f,geD, = f+geD, or, equivalently, D +D; CDs.

The subset of A consisting of all deductively closed assessments is—not surprisingly—denoted by D and those with
confusion by I := Dn A. Not all assessments without confusion remain so after deductive extension; those that do
called deductively closable and form the set A" := {4 € A : extp .A € D}, where we have made use of the fact that e;
never removes statements and therefore cannot remove confusion.

It is useful to have an explicit criterion on hand to test whether an assessment is deductively closable or not:

Theorem 2.2. An assessment A in A is deductively closable—i.e., A € A*—if and only if 0 ¢ A —posiAs.

This criterion is a feasibility problem. When the assessment consists of only a finite number of statements, the feasi
space A —posi A is a union of convex cones U e 4. ({f} —posi.A>) and the problem becomes a disjunctive lin
program. It reduces to a plain linear program when, for example, .A- is also convex.

Again, it is possible to automatically remove confusion from deductively closed assessments, but there is I
flexibility than for assessments because not all modified assessments suggested in Proposition 2.1 are deductiv
closable:

Proposition 2.3. While ensuring the resulting assessment is still deductively closed, confusion can be removed fror
deductively closed assessment D in D, by removing the confusing gambles from the rejected gambles or by remov:
: " T D umbles and then taking the deductive extension. So formally we ha

2. Belief structures

-D, of a deductively closed assessment D in D is the negation invari.
pty or a linear space, the cone’s so-called lineality space. The lineal
isessment D in D with a non-empty set of indifferent gambles D.., den

by D; 4 =D, \D., then
),

ski addition with the indifferent gambles: D , + D~ = D5 4, and
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Presentations as personal attempts to make sense of this...
and try to convince (myself and perhaps you) that concept

and tools from abstract logic might be useful after all in IP.

-
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But also, try to connect with and “make sense” (from a logical point of view) of other existing very nice and
interesting stuff within the IP area
- so the "who” should also include (many) other people, although | will not be able to go very far, and
thus acknowledge everyone and their work as | should...

my perspective will be very biased, and | will be interested in the abstract perspective from
the Polish tradition, hence again, many works and different traditions will be excluded
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A Logical View of Probability

Nic Wilson' and

Abstract. Imprecise Probability (or Upper and Lower Prob-
ability) is represented as a very simple but powerful logic.
Despite having a very different lang from classical log
ics, it enjoys many of the most important properties, which
means that some extensions to classical logic can be applied
in a fairly straightforward way. The logic is extended to allow
qualitative grades of belief, which can be used to represent
degrees of caution, and this is applied to create theories of
belief revision and non-monotonic inference for probability
statements. We also construct a theory of defanlt probabil-
ity which is based on a variant of Reiter’s default logic; this
can be used to express and reason with default probability

statements.

1 INTRODUCTION

The best understood and most highly developed theory of un-
certainty is Bayesian probability. There is a large literature on
its foundations and there are many different justifications of
the theory; however, all of these assume that for any propo-
sition a, the beliefs in a and —a are strongly tied together.
Without compelling justification, this assumption greatly re-
stricts the type of information that can be satisfactorily rep-
resented, it makes it impossible to represent adequately

partial information about an unknown chance distribution P

Serafin Moral?

Apart from being a simple and elegant way to express this
theory of probability, there are other benefits of expressing
it as a logic. It brings into the logician’s domain this seman-
tically very well founded, fairly well-behaved and expressive
representation of beliefs. Because the logic has many of the
properties of classical logics, it means that augmentations of
classical logic can be applied relatively easily to this logic.

Imprecise Probability does not distinguish caution from ig-
norance; in section 3 we look at a way of extending the theory
to allow qualitative grades, which can be used to represent de-
grees of cantion. Like classical logic, it is very conservative,
and is monotonic. It therefore seems natural to look at ex
tensions which tentatively allow stronger conclusions to be
drawn, but avoid inconsistency. Three examples of this are
given; in section 4, work on belief revision and non-monotonic
inference relations is extended to this logic, which leads to
ways of resolving inconsistencies, and in section 5, a version
of Reiter’s Default Logic is applied, which allows more com-

plex tentative assumptions.

2 THE LOGIC OF GAMBLES

Let © be a finite set of possibilities, exactly one of which
must be true. A gamble on © is a function from Q to IR. If
you were to accept gamble X and w turned out to be true then
you would gain X(w) utiles (so you would lose if X(w) < 0).

A Probabilistic Logic Based on the
Acceptability of Gambles*

Peter R. Gillett »*, Richard B. Scherl®!, Glenn Shafer®

2Rutgers Business School—Newark and New Brunswick

b Monmouth University, New Jers Y

Abstract

This article presents a probabilist: c whose sentences can be interpreted as
asserting the acceptability of gambles described in terms of an underlying logic.
This probabilistic logic has a concrete syntax and a complete inference procedure,
and it handles conditional as well as unconditional probabilities. It synthesizes Nils-
son’s probabilistic logic and Frisch and Hadda anytime inference procedure with

son and Moral’s logic of gambles.

Two distinct semantics can be used for our probabilistic logic: (1) the measure-
theoretic semantics used by the prior logics already mentioned and also by the
more expressive logic of Fagin, Halpern, and Meg and (2) a behavioral seman-
tics. Under the measure-theoretic semantics, sentences of our probabilistic logic are
interpreted as assertions about a probability distribution over interpretations of the
underlying logic. Under the behavioral semantics, these sentences are interpreted
only as asserting the acceptability of gambles, and this suggests different directions
for generalization.
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Abstract

In this paper, we show that coherent sets of gambles
can be embedded into the algebraic structure of infor-
mation algebra. This leads firstly, to a new perspective
of the algebraic and logical structure of desirability

the particular case where information one is interested in
concerns the values of certain groups of variables {X; : i €
I} with 1 an index set, Q = X i, where Q; is the set of
possible values of X;, and @ =5 0’ <= |s = @'|s, ! for
every S C I and o, € Q. (see [12]).
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Probability Filters as a Model of Belief;

Comparisons to the Framework of Desirable Gambles.
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Abstract

‘We propose a model of uncertain belief. This mod-
els coherent beliefs by a filter, F, on the set of prob-
abilities. That is, it is given by a collection of sets
of probabilities which are closed under supersets and
finite intersections. This can naturally capture your
probabilistic judgements. When you think that it is
more likely to be sunny than rainy, we have {p |
Pp(SUNNY) > p(RAINY)} € F. When you think that

gamble g is desirable, we have { p| Exp,,[g] > 0} € F.

of the model of choice functions, or sets of desirable gam-
ble sets (we include a mixing axiom, but no Archimadean
axiom).

Using other terms, this model was proposed and dis-
cussed in a joint paper with Jason Konek, (Campbell-Moore
and Konek, 2019), using the interpretation of beliefs with
probabilistic contents as outlined in Moss (2018). The main
results of this paper were stated there without proof.

The paper proceeds as follows. We introduce the model

Highlights

»  We develop a framework for modelling and reasoning
based on a pair of gamble sets.
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The logic behind desirable sets of
things, and its filter
representation

Gert de Cooman ® & &, Arthur Van Camp P, Jasper De Bock @
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Highlights

*  We identify the (filter representation of the) logic
behind the recent theory of coherent sets of desirable
(sets of) things.
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Where?

Whenever possible | will explicitly mention where
concepts, tools, and results can be found
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What?

e The theory of desirability as a logic;
- Tools from logic can justify some views on the theory of desirability
- Probabilistic semantics and completeness

e Extensions of the theory of desirability may be understood and enriched by tools from logic
- Adding Varieties of rejection

- The case of accept & reject and the case of intuitionistic rejection
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e The theory of d Proposal for project related to study natural logical
extension of this setting, and checking possible link with

- Tools from Ic e er existing approaches within IP.

- Probabilistict
e Extensions of the theory of desirability may be understood and enriched by tools from logic

- Adding Varieties of rejection

- The case of accept & reject and the case of intuitionistic rejection
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What?

e The theory of d Proposal for project related to study natural logical
extension of this setting, and checking possible link with

- Tools from Ic e er existing approaches within IP.

- Probabilisticto o

e Extensions of the theory of desirability may be understood and enriched by tools from logic

- Adding Varieties of rejection

- The case of accept & reject and the case of intuitionistic rejection

1
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Abstract) consequences and desirability
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What is logic: a lazy start

The study of (correct) informational processes of inference (reasoning)

When, given something that has been asserted / assumed as true, can we assert / assume as true
something else?
Examples:
> If the enemy cuts the Sambuco’s dam, the Val Lavizzara will be inundated. The Val Lavizzara is not
inundated. Hence, the enemy did not cut the Sambuco’s dam.

> If the enemy cuts the Sambuco’s dam, the Val Lavizzara will be inundated. The Val Lavizzara is
inundated. Hence, the enemy has cut the Sambuco’s dam.

» |If Carlo won the race, then, if Mario came second then Sergio came third; Mario did not come
second. Hence, either Carlo won or Sergio came third.
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What is logic: a lazy start

The study of (correct) informational processes of inference (reasoning)

IDSTA @ surs

relation between “things”, and its properties

When, given something that has been asserted / assumed as true, can {ye assert / assume as true
something else?

Examples:

> If the enemy cuts the Sambuco’s dam, the Val Lavizzara will be inundated. The Val Lavizzara is not
inundated. Hence, the enemy did not cut the Sambuco’s dam.

> If the enemy cuts the Sambuco’s dam, the Val Lavizzara will be inundated. The Val Lavizzara is
inundated. Hence, the enemy has cut the Sambuco’s dam.

» |If Carlo won the race, then, if Mario came second then Sergio came third; Mario did not come
second. Hence, either Carlo won or Sergio came third.
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What is logic: a lazy start

The study of (correct) informational processes of inference (reasoning)

IDSTA @ surs

valid / sound

When, given something that has been asserted / assumed as true, can wg assert / assume as true

something else?

Examples:

> If the enemy cuts the Sambuco’s dam, the Val Lavizzara will be inundated. The Val Lavizzara is not
inundated. Hence, the enemy did not cut the Sambuco’s dam.

> If the enemy cuts the Sambuco’s dam, the Val Lavizzara will be inundated. The Val Lavizzara is
inundated. Hence, the enemy has cut the Sambuco’s dam.

» |If Carlo won the race, then, if Mario came second then Sergio came third; Mario did not come
second. Hence, either Carlo won or Sergio came third.
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What is logic: a lazy start
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The study of (correct) informational processes of inference (reasoning)

valid / sound in virtue of the form of considered “things” in the relation

- When, given something that has been asserted / assumed as true, can wg assert / assume as true

something else?

- Examples:

>

If the enemy cuts the Sambuco’s dam, the Val Lavizzara will be inundated. The Val Lavizzara is not
inundated. Hence, the enemy did not cut the Sambuco’s dam.

If the enemy cuts the Sambuco’s dam, the Val Lavizzara will be inundated. The Val Lavizzara is
inundated. Hence, the enemy has cut the Sambuco’s dam.

If Carlo won the race, then, if Mario came second then Sergio came third; Mario did not come
second. Hence, either Carlo won or Sergio came third.
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What is logic: a lazy start

The study of (correct) informational processes of inference (reasoning)

IDSTA @ surs

valid / sound in virtue of the form of considered “things” in the relation

When, given something that has been asserted / assumed as true, can wg assert / assume as true
something else?

Examples:

> If trimballirin quagqua, then machin_truc supercazzola. Not machine_truc supercazzola. Hence,

trimballirin quagqua.

if trimballirin quagqua, then machin_truc supercazzola. Machin_truc supercazzola. Hence,
trimballirin quaqqua.

» If Carlo blabla, then, if Mario squaraush then Sergio proprot; not the case that Mario squaraush.
Hence, either Carlo blabla or Sergio proprot.
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The idea of (abstract) consequence relation

e The study of a general theory of logical systems traces back to the work of Alfred Tarski, Paul Hertz and of
Gerhard Gentzen in the early twentieth century.

Gerhard Gentzen (24 November 1909 — 4
August 1945) was a German mathematician
and logician. He made major contributions to
the foundations of mathematics, proof theory,
especially on natural deduction and sequent
calculus.

Alfred Tarski (born Alfred
Teitelbaum; January 14, 1901
— October 26, 1983) was a
Polish-American logician and
mathematician.
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A small digression

HISTORY OF MATHEMATICS + VOLUME 33

Logics
Lost Genius

The Life of
Gerhard Gentzen

Eckart Menzler-Trott

American Mathematical Society * London Mathematical Society
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Varieties of presenting inference

Unary assertional system: I ¢

Unary rejection system: ¢

Binary implicational system, or “thing-thing” consequence relation: y = ¢

e Asymmetric, or “set (of things) - thing”, consequence relation : I' - ¢

e Symmetric, or “set (of things) - set (of things) ”, consequence relation : I' - ®




First, the binary case: thing-thing

Suppose we are given a set A of “things”, assertions, claims, etc.

We may want to model a relation between “things” such that whenever | assert/accept/consider as true
some “thing” a, we should also necessarily assert/accept/consider as true some other “thing” b.

- Stated otherwise, the acceptance of a entails, implies the acceptance of b

How to characterise such relation?
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First, the binary case: thing-thing

Suppose we are given a set A of “things”, assertions, claims, etc.

We may want to model a relation between “things” such that whenever | assert/accept/consider as true
some “thing” a, we should also necessarily assert/accept/consider as true some other “thing” b.

- Stated otherwise, the acceptance of a entails, implies the acceptance of b
How to characterise such relation? Two ways:

- characterisation: provide a list of minimal structural properties / principles / axioms that such
a relation should satisfy

- characterisation: make reference to “something else”, external, more “primitive”, given by
what such “things” are supposed to represent

IDSTA @ surs
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"Thing-thing” consequence relation: syntactic characterisation

What are the minimal property of the relation “the acceptance of a entails the acceptance of b"?
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"Thing-thing” consequence relation: syntactic characterisation

What are the minimal property of the relation “the acceptance of a entails the acceptance of b"?
- ala (reflexivity)
- fakFbandblFc thenalc (transitivity)

e Thatis:

A "thing-thing” (binary) consequence relation = C A X A is a pre-order (or quasi-order) over A, and the

relational structure (A, =) is a pre-ordered set (or quasi-ordered set).
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"Thing-thing” consequence relation: syntactic characterisation

r:= Ale likes to spend time with Ola

g:= Ola takes Ascanio with her

s:= Poznan is a beautiful town

p:= Ascanio is a good kid

IDSTA @ surs



i

"Thing-thing” consequence relation: syntactic characterisation

/ ™\

r:= Ale likes to spend time with Ola

/\

g:= Ola takes Ascanio with her

s:= Poznan is a beautiful town

\J

p:= Ascanio is a good kid

\J
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"Thing-thing” consequence relation: semantic characterisation

Assume a possible world (state of affairs / beliefs) is characterised by the things | accept, i.e. by a (valuation)
function 8 : A — {a,r}.

Thus a possible world is tantamount to the “truth set” {a € A | 8(a) = a} of its characteristic (valuation)

function z, and we will move freely from seeing x as a subset of A or a characteristic function.
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“Thing-thing” consequence relation: semantic characterisation

r:= Ale likes to spend time with Ola

g:= Ola takes Ascanio with her

s:= Poznan is a beautiful town

p:= Ascanio is a good kid

IDSTA @ surs
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"Thing-thing” consequence relation: semantic characterisation

Assume a possible world (state of affairs / beliefs) is characterised by the things | accept, i.e. by a (valuation)
function 8 : A — {a,r}.

Thus a possible world is tantamount to the “truth set” {a € A | 8(a) = a} of its characteristic (valuation)

function z, and we will move freely from seeing x as a subset of A or a characteristic function.

Given a set of possible worlds &, the collection of possible world in which a “thing” a € A is true/ accepted /

...isdefinedas &(a) = {8 € S |a € 8}

Hence

e Definition: The (semantic) relation =g generated by @ over A is defined as
a kg bifand only if ©(a) C ©(b)
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“Thing-thing” consequence relation: semantic characterisation

-

\_

~

r:= Ale likes to spend time with Ola

g:= Ola takes Ascanio with her

p:= Ascanio is a good kid

s:= Poznan is a beautiful town

32
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“Thing-thing” consequence relation: semantic characterisation
(

r:= Ale likes to spe/d time with Ola

/\

g:= Ola takes Ascanio with her

s:= Poznan is a beautiful town

\J

\_

p:= Ascanio is a good kid

\J

33
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“Thing-thing” consequence relation: semantic characterisation
(

r:= Ale likes to spe/d time with Ola

A /

g:= Ola takes Ascanio with her /

N A

s:= Poznan is a beautiful town

\J

p:= Ascanio is a good kid

\J
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“Thing-thing” consequence relation: semantic characterisation
(

r:= Ale likes to spe/d time with Ola

N2/

g:= Ola takes Ascanio with her /

N A

s:= Poznan is a beautiful town

\J

p:= Ascanio is a good kid

\J
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“Thing-thing” consequence relation: semantic characterisation
(

r:= Ale likes to spe/d time with Ola

A2/ °

g:= Ola takes Ascanio with her /

N A

s:= Poznan is a beautiful town

\J

p:= Ascanio is a good kid

\J



"Thing-thing” consequence relation: semantic characterisation

It is immediate to verify that

Fact: Given a set of possible worlds ©, the structure (A, g ) is a pre-ordered set, meaning that l-¢ is a
binary consequence relation over A.
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"Thing-thing” consequence relation: semantic characterisation

It is immediate to verify that

Fact: Given a set of possible worlds ©, the structure (A, g ) is a pre-ordered set, meaning that l-¢ is a
binary consequence relation over A.

Completeness question: Given a binary implication (pre-order) - on some set of “things”, is
there a class of possible words / valuations @ over A whose induces semantic relation (pre-
order) ¢ coincide with -7 Is there some kind of “canonical” (and “concrete”) semantics &

representing (inducing) ?
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“Thing-thing” consequence relation: an abstract completeness theorem

Question: Given a binary implication -, is there a class of possible words @ over A whose semantic

relation g coincide with the relation 7
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“Thing-thing” consequence relation: an abstract completeness theorem

Question: Given a binary implication -, is there a class of possible words @ over A whose semantic
relation g coincide with the relation 7

r:= Ale likes to spend time with Ola

r:= Ale likes to spend time with Ola

[\ / / / A\
q:= Ola takes Ascanio with her [\ Ve \
q:= Ola takes Ascanio with her /

\ s:= Poznana is a beautiful town

J : !
p:= Ascanio is a good kid \ /
\j p:= Ascanio is a good kid

s:= Poznana is a beautiful town

\J

40
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So what to do?

i

"Thing-thing” consequence relation:fan abstract completeness theorem

e Question: Given a binary implication I, is there a class of possible words @ over A whose semantic
relation g coincide with the relation 7
) . ) r:= Ale likes to spend time with Ola
r:= Ale likes to spend time with Ola
q:= Ola takes Ascanio with her g:= Ola takes Ascanio with her

s:= Poznana is a beautiful town

\J

\ s:= Poznana is a beautiful tow

p:= Ascanio is a good kid

\j p:= Ascanio is a good kid
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"Thing-thing” o D o 5 theorem

So what to do?

e Question: C ar A whose semantic

4 1

relation g coincide with the relation 7

r:= Ale likes to spend time with Ola
r:= Ale likes to spend time with Ola

I\

q:= Ola takes Ascanio with her q:i= Ola takes Ascanio with her
s:= Poznana is a beautiful tow

\j s:= Poznana is a beautiful town
p:= Ascanio is a good kid

\j p:= Ascanio is a good kid

42
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So what to do? Idea: | can define a valuation as the upset of the

quasi-order generated by a point (aka principal cones)
e Question: C

4 1

relation g coincide with the relation 7

5 theorem

ar A whose semantic

K‘

~

r:= Ale likes to spend time with Ola

I\

q:= Ola takes Ascanio with her q:i= Ola takes Ascanio with her
s:= Poznana is a beautiful tow

r:= Ale likes to spend time with Ola

N

Y, s:= Poznana is a beautiful town

\J )
p:= Ascanio is a good kid
\j p:= Ascanio is a good kid

43
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“Thing-thing” consequence relation: an abstract completeness theorem

Question: Given a binary implication -, is there a class of possible words @ over A whose semantic
relation g coincide with the relation 7

e Theorem (abstract completeness for binary consequence relation): Given a quasi-order - over A it is always
possible to find a class of possible words @ over A such that == .
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“Thing-thing” consequence relation: an abstract completeness theorem

Question: Given a binary implication -, is there a class of possible words @ over A whose semantic
relation g coincide with the relation 7

Theorem (abstract completeness for binary consequence relation): Given a quasi-order |- over A it is always
possible to find a class of possible words @ over A such that == .

Proof: Consider the collection of all principal cones of A, i.e. ©(F ) :={[a) :={b€A|akF b} |aecA}.
Clearlythe map h:a— {C € ©(F ) |a € C}issuch that a &= biff h(a) C h(b), meaning that =g, .

v

This provide a sort of representation of quasi-orders, that is a way of describing them “indirectly” via their

principal cones; it shows how the abstract notion of pre-order can be “transformed” into a concrete relation

defined using a collection of subsets.
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“Thing-thing” consequence relation: an abstract completeness theorem

Question: Given a binary implication -, is there a class of possible words @ over A whose semantic

relation g coincide with the relation 7

Theorem (abstract completeness for binary consequence relation): Given a quasi-order |- over A it is always

possible to find a class of possible words @ over A such that - = ¢ .

Proof: Consider the collection of all principal cones of A, i.e. ©@(F ) :={[a) :={b€A|lat b} |aec A}.
Clearly the map|h : a = {C € ©(F ) | a € C}is such that a &= b iff h(a) C h(b), meaning that F =g, .
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"Thing-thing” consequence relation: absoluteness (categoricity)?

Clearly it holds that © C &( k¢ )

Question: does the other direction holds too, and thus ©( g ) = ©? That is does a collection of possible
worlds always characterise a unique pre-order?
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"Thing-thing” consequence relation: absoluteness (categoricity)?

Clearly it holds that © C &( k¢ )

Question: does the other direction holds too, and thus ©( g ) = ©? That is does a collection of possible
worlds always characterise a unique pre-order?
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"Thing-thing” consequence relation: absoluteness (categoricity)?

Clearly it holds that © C &( k¢ )

Question: does the other direction holds too, and thus &( g ) = ©? That is does a collection of possible
worlds always characterise a unique pre-order?
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"Thing-thing” consequence relation: absoluteness (categoricity)?

Clearly it holds that © C &( k¢ )

Question: does the other direction holds too, and thus ©( g ) = ©? That is does a collection of possible
worlds always characterise a unique pre-order?
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"Thing-thing” consequence relation: absoluteness (categoricity)?

Clearly it holds that © C &( ¢ )

Question: does the other direction holds too, and thus ©( g ) = ©? That is does a collection of possible
worlds always characterise a unique pre-order?
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"Thing-thing” consequence relation: absoluteness (categoricity)?

Clearly it holds that © C &( ¢ )

Question: does the other direction holds too, and thus ©( g ) = ©? That is does a collection of possible
worlds always characterise a unique pre-order?
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"Thing-thing” consequence relation: absoluteness (categoricity)?

Clearly it holds that © C &( k¢ )

Question: does the other direction holds too, and thus ©( g ) = ©? That is does a collection of possible
worlds always characterise a unique pre-order?

No. In fact, let A = {a,b,c} and © = {{a}, {b}, {c}}. We have that S(a) = {{a}}, ©(b) = {{b}}, and thus
S(x) = {{x}}, foreachx € A. Clearly x g y iff x = y. Now, let & := g2(A). It holds that Fg =F¢ .

* Generally speaking, a (abstract) logic does not need to have a unique semantics, as it may constitute the
inferential basis for many different theories.
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The idea of (abstract) asymmetric consequence relation

The concept of (abstract asymmetric) consequence relation
I'-o@

“The set of hypotheses / assessments / background knowledge I entails ¢”

“The set of things denoted by I entails entails the thing denoted by ¢”
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This view is proper to the “polish” tradition, stemming from the work by Tarski and
Lindembaum, and later in the work of ko$, Suszko, Wéjcicki, and Czelakowski among others.

The idea of (a0stract) asymmertric cpnsequence reiation

The concept of (abstract asymmetric) conse juence relation
I'F¢g
“The set of hypotheses / assessments / background knowledge I' entails ¢”

“The set of things denoted by I" entails entails the thing denoted by ¢”

e Analogous concept, that of consequence operator
@ € Cn(I)
"¢ belongs to the set of propositions / things entailed by the set of hypotheses / things I'”

e What kind of properties satisfies """ ( “Cn”) to be called a consequence relation (operator) ?




i

What is a (abstract) asymmetric consequence relation

Let & be some set (of propositions, things, ...)

We say that a relation + C ¢o(Z) X &£ is a (abstract asymmetric) consequence relation over £, whenever
it satisfies the following, for every @, y, ', A:

- @l (Reflexivity)

- fI'k @, forallp € A,and Ay, thenT' (Transitivity / Cut)

IDSTA @ surs
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What is a (abstract) asymmetric consequence relation

Let & be some set (of propositions, things, ...)

We say that a relation + C ¢o(Z) X &£ is a (abstract asymmetric) consequence relation over £, whenever
it satisfies the following, for every @, y, ', A:

- @l (Reflexivity)
- fI'F@and'C A, then Al ¢ (Monotonicity / Dilution)
- fI'k @, forallp € A,and Ay, thenT' (Transitivity / Cut)

IDSTA @ surs
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Other “variant” of reflexivity implied by
these two conditions:
What is a (abstract) asymmetric consequence I p ) henever g e T

i

Let & be some set (of propositions, things, ...)

We say that a relation + C (&) X &£ is a (abstract asymmetric) consequence relation over £, whenever

it satisfies the following, for every @, y, ', A:

-l ko (Reflexivity)
-l fT'kF@and"C A, then AF ¢ (Monotonicity / Dilution)
- fI'k @, forallp € A,and A Fy, thenT' (Transitivity / Cut)
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It is easy to check that with this
reformulation, (Diluation) follows from
What is a (abstract) asymmetric consequence I{Reflexivity + Cut)

Let & be some set (of propositions, things, ...)

We say that a relation + C (&) X &£ is a (abstract asymmetric) consequence relation over £, whenever

it satisfies the following, for every @, y, ', A:

- ' @, whenevergp €I’ (Reflexivity)
- fI'k@and"C A, then A ¢ (Monotonicity / Dilution)
- fI'k @, forallp € A,and Ay, thenT' (Transitivity / Cut)
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What is a (abstract) asymmetric consequence relation

Let & be some set (of propositions, things, ...)

We say that a relation + C ¢o(Z) X &£ is a (abstract asymmetric) consequence relation over £, whenever
it satisfies the following, for every @, y, ', A:

- I'F @, wheneverp € I (Reflexivity)
- fI'k@and"C A, then A ¢ (Monotonicity / Dilution)
- fI'k @, forallp € A,and Ay, thenT' (Transitivity / Cut)

IDSTA @ surs
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What is a (abstract) asymmetric consequence relation

Let & be some set (of propositions, things, ...)

We say that a relation + C ¢o(Z) X &£ is a (abstract asymmetric) consequence relation over £, whenever
it satisfies the following, for every @, y, ', A:

- I'F @, wheneverp € I (Reflexivity)
- fI'k@and"C A, then A ¢ (Monotonicity / Dilution)
- fI'k @, forallp € A,and Ay, thenT' (Transitivity / Cut)

A consequence relation is called finitary if, for every ¢, I™:

- ' ¢, then there is a finite A C I" such that A - ¢ (Finitariness)
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What is a (abstract) asymmetric consequence relation

Definition: Let & be some set and F C (&) X &£ a relation. Whenever - is a (asymmetric) consequence
relation, the pair (&, =) is called a (abstract) asymmetric consequence system, sometimes also referred to
as (abstract) deductive system, or Tarski structure.




As

ymmetric consequence relation vs consequence operator

Let & be some set (of propositions, things, ...).

A closure operator Cn : @9(&) — (&) over the powerset (&) is often called an (abstract) consequence
operator over &; remember that as such it satisfies the following, for every I', A:

- I'cCn) (Reflexivity)
- IfI"C A, then Cn(I') € Cn(A) (Monotonicity)
- Cn(Cn(I')) € Cn(I) (Transitivity)

A consequence operator over £ is called finitary if, for every I':

Cn() = U Cn(A) (Finitariness)
Aegp, (&)
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Asymmetric consequence relation vs consequence operator

Fact: Let & be some set. Then
- If F C (&)X Zis a (finitary) consequence relation, then the operator defined by
Cn(I") :={p € & |I' - ¢} is a (finitary) consequence operator
- I Cn: (&) = @(&) is a (finitary) consequence operator, then the relation defined by
'+ @ iff @ € Cn(I")) is a (finitary) consequence relation

Since we actually move freely between Cn and -, we may also refer to (£, Cn) as a consequence system.
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“Set (of things)-thing” consequence relation: an abstract completeness theorem

Remember that given a set of possible worlds &, we define ©(¢) := {8 € © | ¢ € 8}. Similarly, we define
o) = ﬂ@(y) ={8e€©@|['C8}, foraset 'CZ

rel’

e Definition: The (semantic) asymmetric consequence relation g generated by © over £ is defined as

I'Fg @ifandonly if &(I') C &S(p)
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“Set (of things)-thing” consequence relation: an abstract completeness theorem

Let us consider a specific case over p,q,r, and with the following valuations.
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“Set (of things)-thing” consequence relation: an abstract completeness theorem

Properties?
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“Set (of things)-thing” consequence relation: an abstract completeness theorem

f P G P.9.f

We have that the consequence ¢ generated by these four valuations is such that
° gk,

*p,qkrandp,rkgq

ep¥Fr,andr¥ gandr¥ pandgq,r ¥p
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“Set (of things)-thing” consequence relation: an abstract completeness theorem

f P G P.9.f

We have that the consequence ¢ generated by these four valuations is such that
° gk,

*p,qkrandp,rkgq

ep¥Fr,andr¥ gandr¥ pandgq,r ¥p

actually r means “if p then g”, in the classical sense
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“Set (of things)-thing” consequence relation: an abstract completeness theorem

Remember that given a set of possible worlds &, we define ©(¢) := {8 € © | ¢ € 8}. Similarly, we define
o) = ﬂ@(y) ={8e@|I'C8},foraset 'CZL

rel

e Definition: The (semantic) asymmetric consequence relation g generated by © over £ is defined as

I'Fg @ifandonly if &(I') C &S(p)

For an arbitrary consequence system, is it possible to find a class of possible words /
valuations inducing the same consequence relation?
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“Set (of things)-thing” consequence relation: an abstract completeness theorem

Remember that given a set of possible worlds &, we define ©(¢) := {8 € © | ¢ € 8}. Similarly, we define
o) = ﬂ@(y) ={8e€©@|['C8}, foraset 'CZ
yel'

e Definition: The (semantic) asymmetric consequence relation g generated by © over £ is defined as

I'Fg @ifandonly if &(I') C &S(p)

e Theorem (completeness for asymmetric consequence): Let (&, - ) be a consequence system. Then it is

always possible to find a class of possible words © over A such that = =F¢ .




IDSTA @ surs

“Set (of things)-thing” consequence relation: an abstract completeness theorem

Remember that given a set of possible worlds &, we define ©(¢) := {8 € © | ¢ € 8}. Similarly, we define
o) = ﬂ@(y) ={8e@|I'C8},foraset 'CZL

rel

e Definition: The (semantic) asymmetric consequence relation g generated by © over £ is defined as

I' g @ ifand only if &(I") C &(¢)

e Theorem (completeness for asymmetric consequence): Let (&, - ) be a consequence system. Then it is
always possible to find a class of possible words © over A such that = =F¢ .

In order to prove it, we introduce the notion of closure operator on posets, and of closure systems.
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An first excursus on posets and lattices

il
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Basics of the abstract (algebraic) view on logic: where

OXFORD LOGIC GUIDES » 41

Algebraic Methods in
Philosophical Logic

J. MICHAEL DUNN
and
GARY M. HARDEGREE

OXFORD SCIENCE PUBLICATIONS

SYNTHESE LIBRARY / VOLUME 199

RYSZARD WOICICKI

THEORY OF
LOGICAL CALCULI

Basic Theory of Consequence Operations

74
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rtial orders

Definition: Let A be a set and < be a binary relation over A. The relation < is partial order when it is a pre-
order that is also anti-symmetric, that is whenever it satisfies the following, for every a, b, c € A it satisfies

- a<a (reflexivity)
- fa<bandb <c thena<c (transitivity)
- lfa<bandb <a,thena=>b (anti-symmetry)

If <is a partial-order, the relational structure (A, <) is called a partially ordered set, or poset.

Ifa < b but b # a, we thus write a < b.
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Supremum / infimum on orders

Given a poset (A, <) and a subset B C A, an element a € A is said to be

- the least upper bound, or supremum, of B if b < a, for every b € B, and whenever there is ¢ € A such
that b < ¢, for every b € B, then a < ¢; if a supremum of B exists, it is unique and is denoted by \/B,

- the greatest lower bound, or infimum, of B if a < b, for every b € B, and whenever there is ¢ € A such
that ¢ < b,for every b € B, then ¢ < g; if a infimum of B exists, it is unique and is denoted by /\B.
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Supremum / infimum on orders
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inf{b,c} =a

Supremum / infimum on orders
sup{b,c} =e

~
AN

e
&

a
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Supremum / infimum on orders

\/

>0 — @
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Supremum / infimum on orders
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inf{d,e, f,g} = a

Supremum / infimum on orders
supid.e,f,g} =7
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Orders and lattices

Definition: Let (A, <) be a poset. If it is such that
e every subset of type {a, b} has a supremum a Vv b (also called join), then itis called a join-semi-lattice
e every subset of type {a, b}has a infimum a A b (also called meet), then it is called a meet-semi lattice

e every subset of type {a, b} has both a supremum and an infimum, is it called a lattice.

e Example: the poset (§(A), C ) has both joins (set-theoretic union) and meets (set-theoretic intersection),
and it is thus (obviously) a lattice (as we are going to see it naturally gives rise to the usual algebraic lattice

(go(A), N, U)).




i
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Algebraic lattices

Definition: An algebra (A, A, V) is an algebraic lattice whenever the two operations on A are both
commutative and associative, and they satisfies the absorptions laws

- xAN(xVYy =x,
- XxV(XAY) =X,

meaning in particular that they also satisfies the following idempotent laws
- XAX =2,

- XVX =X

Example: Consider a set A. Then the powerset algebra (g(A), N, V) is a algebraic lattice.
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Lattices and orders

Fact: If (A, A, V) is an algebraic lattice, then we can define a poset (A, <) which is a lattice by setting, for
everya,b € A

a<biffavb=>b
Or equivalently, by absorption, by settinga < biffa Ab = a.

e Example: Consider the lattice (§9(A), N, U ). The the partial ordera < b iff a U b = b is simply the usual
subset relation.

e The way of viewing lattices as partially ordered sets, with certain additional properties, is extremely useful
from a logical point of view.




Semi-lattices and orders
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Definition: An algebra (A, ¢ ) is an algebraic semi-lattice whenever the binary operation e on A is both
commutative and associative, and it satisfies the idempotent law

- XoX =X

Fact: As for algebraic lattices , any algebraic semi-lattice (A, o ) gives rise to a join-semi lattice (A, <) by
setting eithera < b iff a o b = b (and thus o is seen as a join / disjunction) or to a meet-semi lattice (A, <) by
settinga < b iff a o b = a (and thus » is seen as a meet / conjunction)
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Bounded and complete lattices

Definition: Let (A, <) be a poset that is a lattice.
- Whenever both 0, := /\A and 1, := \/A exist, we say that the poset (lattice) is bounded,

- Whenever 1, € A and /\B exists for every B C A (with 1, = /\@), we say that the lattice is a closure
system,

- Whenever both /\B and \/B exist for every B C A (with 1, = /\@ and 0, = \/@), we say that the
lattice is complete.

e Example: the powerset lattice (go(Z), C ) is obviously complete. Notice however that not every lattice is

bounded, and thus a fortiori complete, e.g. (Z, <).
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Bounded and complete lattices
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bounded? complete?
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Bounded and complete lattices

i
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Lattices, orders and closure operators

Definition: Let (A, <) be a poset that is a lattice. A function Cl : A — A is called a closure operator on A

whenever it satisfies the following, for every a, b € A:
(C1) a < Cl(a)
(C2) If a < b, then Cl(a) < Cl(b)
(C3) CI(Cl(a)) < Cl(a)

Elements a € A such that a = Cl(a) are called closed. The collection of all closed elements of A is denoted

by €4, or simply € when the underlying poset is clear.
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working? no

Cl(e) > e=Cl(b) /

d < g but Cl(d) # Cl(g) ° >




working?
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working?
no, because f £ CI(f)
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Lattices, orders and closure operators

//

If f would not be there, this is
ok

dop
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Lattices, orders and closure operators
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Lattices, orders and closure operators

Definition: Let (A, <) be a poset that is a lattice. A function Cl : A — A is called a closure operator on A

whenever it satisfies the following, for every a, b € A:
(C1) a < Cl(a)
(C2) If a < b, then Cl(a) < CI(b)
(C3) Cl(Cl(a)) < Cl(a)

Elements a € A such that a = Cl(a) are called closed. The collection of all closed elements of A is denoted

by €4, or simply € when the underlying poset is clear.

Let (&, |- ) be consequence system, and consider the complete powerset lattice (g0(&Z), C ). Then the
consequence operator Cn is, by definition, a closure operator on g(Z). Closed sets I' = Cn(I") are usually
called “theories” and their collection denoted by T(F ) or ..
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Lattices, orders and closure operators

Theorem: Let (A, <) be a poset that is a lattice, and Cl : A — A be a closure operator on A
1.Cla)= /\(b€GC,|a<bh)

2.1f (A, <) is complete, then (€4, <) is also a complete lattice (and thus a closure system), and such

that /\ & = \ & and \/ o = CI(\/ &), for every family o/ C G,.
¢ ¢

A A

100
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Lattices, orders and closure operators

Theorem: Let (A, <) be a poset that is a lattice, and Cl : A — A be a closure operator on A
1.Cla)= /\(b€GC,|a<bh)

2.1f (A, <) is complete, then (€4, <) is also a complete lattice (and thus a closure system), and such

that /\ & = \ & and \/ o = CI(\/ &), for every family o/ C G,.
¢ ¢

A A

Proof: For the first point, since a < Cl(a) = CICl(a), we have that Cl(a) € €,. Now assume a < b < Cl(a),
for some b € €. Thus Cl(a) < Cl(b) = b < CICl(a) = Cl(a), meaning Cl(a) = /\ {beC,|a<b}. Forthe
second point, we first verify that CI(/\ A) < a = Cl(a), for every a € &/, meaning that CI(/\ ) < /\.Qi,
and thus by (C1) we get /\,Qi € €. Then by definition and the previous points:
\ad=N\bec,la<bVacd)=N\{beC,|\/«<b}=Cl(\/).

G

A
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Lattices, orders and closure operators

By the first point of the previous theorem, we immediately get that:

Corollary: Let (A, <) be a complete lattice, and Cl; : A = A be some closure operators, with i = 1,2. Thus
€, =G, implies that Cl; = Cl,.

IDSTA @ surs
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Lattices, orders and closure operators

By the first point of the previous theorem, we immediately get that:

Corollary: Let (A, <) be a complete lattice, and Cl; : A = A be some closure operators, with i = 1,2. Thus
€, =G, implies that Cl; = Cl,.

Corollaries: Let (£, =) be consequence system.

1. (Z, € ) is a complete lattice (and thus a closure system), and such that /\% = ﬂ € and

T

\/‘6 — Cn(\/ €), for every family of theories € C .
3

~

2. Given a consequence system (Z, "), T, =Z_, impliesthat-=F".
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Lattices, orders and closure operators

o Definition: Let (A, <) be a bounded lattice. An elementa € A, is an atom if 0 < a, and there is no
a+#b e Asuchthat0 < b <a, and adual atomifa <1, andthereisnoa #b € A suchthata <b < 1.
(A, <) is thus said to be atomic if for every a € A\ {0} there is a set of atoms B such that b = \/A, and
dually atomic if for every a € A\ {1} there is a set of dual atoms B such that b = /\A.

105
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Lattices, orders and closure operators
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Lattices, orders and closure operators

9 G
N N\
dual atoms \ - \
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Lattices, orders and closure operators

o Definition: Let (A, <) be a bounded lattice. An elementa € A, is an atom if 0 < a, and there is no
a+#b e Asuchthat0 < b <a, and adual atomifa <1, andthereisnoa #b € A suchthata <b < 1.
(A, <) is thus said to be atomic if for every a € A\ {0} there is a set of atoms B such that b = \/A, and

dually atomic if for every a € A\ {1} there is a set of dual atoms B such that b = /\A.

e Corollary: Let (A, <) be a complete lattice, and Cl : A — A be a closure operator. Assume (¢4, <) is
dually atomic. Then Cl(a) = /\ {beM,|a<b}, where M, is the collection of all dual atoms of (€4, <).

110
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Closure systems and closure operators

We now verify that closure systems and closure operators (on complete lattices) are two faces of the same coin.
In fact it is immediate to verify that

Theorem: Let (A, <) be a complete lattice, and consider B C A such that (B, <) is a closure system. Then
Clg : A - A defined Clg(a) := /\ {b € B|a<b}isaclosure operator and clearly (SClB = B. In particular,

whenever B = €, for some closure operator Cl': A - A, we have that Cl' = Cl.

e Corollary: Over complete lattices, there is a bijection between closure systems and closure operators.

111
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Closure systems and closure operators

We now verify that closure systems and closure operators (on complete lattices) are two faces of the same coin.
In fact it is immediate to verify that

e Theorem: Let (A, <) be a complete lattice, and consider B C A such that (B, <) is a closure system. Then
Clg : A - A defined Clg(a) := /\ {b € B|a<b}isaclosure operator and clearly (SClB = B. In particular,

whenever B = €, for some closure operator Cl : A — A, we have that Cl = Clg.

e Corollary: Over complete lattices, there is a bijectic n between closure systems and closure operators.

Let (&, |- ) be consequence system. Remember that the corresponding consequence operator Cn given
by Cn(I') :={p € & | I' - ¢} is a closure operator on g9(Z) and thus (T, C ) is a closure system.

Hence, (szF = I, . But since @Ck{}_ = €, := L, we have that Clg, = Cn and thus

Cn(M)=[){A€Z T CA)
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Closure syste

In particular if (T, C ) is dually atomic, and IM_ is the collection of maximal “non trivial” (i.e.
different from &) theories of (&, ), it holds that

Cn(M)=[){A €M | CA}.

We now verify tha
In fact it is immed

Theorem: Let (A, <) be a complete lattice and consider B C A such that (B, <) is a closure system. Then
Clg : A - A defined Clg(a) := /\ {b € B|a<b}isaclosure operator and clearly (SClB = B. In particular,

whenever B = €, for some closure operz tor Cl : A — A, we have that Cl = Clg.

e Corollary: Over complete lattices, there is 1 bijectic n between closure systems and closure operators.

Let (&, |- ) be consequence system. Remember that the corresponding consequence operator Cn given
by Cn(I') :={p € & | I' - ¢} is a closure operator on g9(Z) and thus (T, C ) is a closure system.

Hence, GCIsF = I, . But since @C"zk = G, := I, we have that Clg, = Cn and thus

Cn(M)=[{A€Z T CA)
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Back to completeness for asymmetric consequence relation

Remember that a (semantic) asymmetric relation g generated by @ over & is defined as

['Fg @ifandonly if ©(I") C &(@), where ©(p) = {A €@ |peAland @) ={Ae©S | C A}

e Corollary (completeness for asymmetric consequence): Let (£, |- ) be a consequence system. Then it is
always possible to find a class of possible words @ over A such that = =F¢ .

Proof: Consider the collection T, of all theories of (&, ). Itis enough to check that verify T =Z,_ .
T

IDSTA @ surs
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Back to completeness for asymmetric consequence relation

Remember that a (semantic) asymmetric relation g generated by @ over & is defined as

['Fg @ifandonly if ©(I") C &(@), where ©(p) = {A €@ |peAland @) ={Ae©S | C A}

e Corollary (completeness for asymmetric consequence): Let (&, - ) be a consequence system. Then it is
always possible to find a class of possible words @ over A such that = =F¢ .

Proof: Consider the collection T, of all theories of (&, ). Itis enough to check that verify T =Z,_ .
T

Or, one could check that that for every pair (I", @)
(J{aeZ lpea)c(){AeZ [T CA}ifandonlyif (A€ [TCA}C{AET |pEA)

or stated otherwise, that

T () C [ )T(A} if and only if T, (A) € T, (¢)




Back to completeness for asymmetric consequence relation

Remember that a (semantic) asymmetric relation g generated by @ over & is defined as

['Fg @ifandonly if ©(I") C &(@), where ©(p) = {A €@ |peAland @) ={Ae©S | C A}

Corollary (completeness for asymmetric consequence): Let (&, - ) be a consequence system. Then it is
always possible to find a class of possible words @ over A such that = =F¢ .

Proof: Consider the collection T, of all theories of (&, ). Itis enough to check that verify T =Z,_ .
T

Assume A € T|_and A k¢ _¢. Notice that ¢ € A since A € T (A) C Z, (¢), meaning that A € T

~

Now, assume that A € T, _, and consider ¢ € &£ such that A = ¢. This means that
pe (P e |ACD)=()T(A). Hence if ® € T, (A) := {A € & | C A}, itholds that ¢ € @,
and therefore ® € T, (), thus A I—sF @. We thus have that ¢ € A, since A € ¥

|_g|_'

IDSTA @ surs

meaning that A € T,
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"Set-thing” consequence relation: absoluteness (categoricity)?

Again, there is no unique semantics for an asymmetric consequence relation.

To see this, set & := {p, q,r}, and the two following classes With respect to &, it is like p = =g
*©,:={8:{pgr} > {ar}|B(p=ac3@=A8r)=al ~andr=(gV-9)
*©,:={8:{p.q,r} = {a,r} | 8(r) =a}

Clearly ©, & ©&,. But itis easy to check that actually Fg =Fg .
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"Set-thing” consequence relation: absoluteness (categoricity)?

Again, there is no unique semantics for an asymmetric consequence relation.

To see this, set & := {p, q,r}, and the two following classes With respect to &, it is like p = =g
@ ={8:{pgr}>far}|B(p)=ac8@=rAs(r) =al ~“andr=(qV-9g)
*©,:={8:{p,q,r} = {a,r}|8(r) =a}

Clearly ©, & ©&,. But itis easy to check that actually Fg =Fg .

From @, ¢ ©,, we getthat kg 2 g .

On the other hand suppose I' F¢_ @. This implies in particular that ¢ # r. Assume @ = p, the case of ¢ = ¢

being the same. Thenp € I'. fI' = @, {r}, clearly any 8 € &, such that 8(p) = r suffices. Now, assume

a ifx=gq,r

g € I', and notice that 8 : x — { e () ={8€ | 3(q) =38 =a}, and in particular is in

r else
©,, butitis notin &,(p), meaning thatI' kg @.




= IDSIA

"Set (of things) -Set (of things)” consequence relation: a syntactic characterisation

The concept of symmetric consequence relation is first presented in Gerhard Gentzen's celebrated

“Untersuchungen lber das logische Schliessen” (1934) if one interpret his calculus of sequents as a metatheory

for a “multiple-conclusion” logic (aka symmetric consequence relation on logical formulae).

Untersuchungen iiber das logische Schlieflen®). I.
Von

Gerhard Gentzen in Gottingen.

Ubersicht.

Die folgenden Untersuchungen beziehen sich auf den Bereich der Pra-
dikatenlogik [bei H.-A.?) ,,engerer Funktionenkalkiil*“ genannt]. Diese um-
faBit solche Schliisse, die in allen Teilen der Mathematik immerzu gebraucht
werden. Was noch zu ihnen hinzukommt, sind Axiome und SchluBiweisen,
die man den einzelnen Zweigen der Mathematik selbst zurechnen kann, z. B.

in der elementaren Zahlentheorie die Axiome der natiirlichen Zahlen, der
Addition, Multiplikation und Potenzierung, sowie der SchluB der voll-
stindigen Induktion; in der Geometrie die geometrischen Axiome.

3.1. Beweis des Hauptsatzes fiir LK-Herleitungen.

Wir fithren (zur Erleichterung des Beweises) eine neue SchluBfigur
ein, welche eine Abwandlung des Schnittes darstellt, wir nennen sie
»Mischung®.

Das Schema hierfiir lautet:

I'-60 4-4
I A* - @% 4" )

Dabei sind fiir @ und A solche Reihen von Formeln, durch Kommata
getrennt, einzusetzen, in welchen eine Formel der Gestalt M, wir nennen
sie die ,Mischformel”, jeweils mindestens einmal (als Glied der Reihe)
auftritt; fir ©* und A* sind dieselben Formelreihen einzusetzen, jedoch
mit Weglassung samtlicher (als Glieder der Reihe) vorkommenden Formeln
der Gestalt MM (M kann eine beliebige Formel sein). Fiir I" und A sind,
wie iiblich, beliebige (eventuell leere) Reihen von Formeln, durch Kommata,
getrennt, einzusetzen.
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"Set (of things) -Set (of things)” consequence relation: a syntactic characterisation

X

N /

RECHERCHES SUR

LA DEDUCTION Multiple-Conclusion Logic
LOGIQUE D.J. Shoesmith & T. J. Smiley

T K | WO P

R. Fopr er ). Ladwite
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"Set (of things) -Set (of things)” consequence relation: a syntactic characterisation

Definition: Let Z be a set. A relation F C (&) X (&) is called a symmetric consequence relation, if it
satisfies the following for every ®,0,T", A:

- I' ®, whenever®nNnl' # @ (Overlap)
- ' o, thenTUAFDUB (Monotonicity / Dilution)
- fTr'u®,F ®U0,, for each quasi-partition (0,,0,) of ®, then I' - ® (Cut for sets)

Given a set ©, a pair (0, ®,) is a quasi-partition of @ whenever ® = ®, U ©,. Hence in particular one of
the member of the pair (0, 0,) can be empty. A quasi-partition is a partition when ©; # @, fori = 1,2.
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"Set (of things) -Set (of things)” consequence relation: a syntactic characterisation

Definition: Let Z be a set. A relation F C (&) X (&) is called a symmetric consequence relation, if it
satisfies the following for every ®,0,T", A:

- I' ®, whenever®nNnl' # @ (Overlap)
- ' o, thenTUAFDUB (Monotonicity / Dilution)
- fTr'u®,F ®U0,, for each quasi-partition (0,,0,) of ®, then I' - ® (Cut for sets)

Fact: Assume = C (&) X (&) satisfies Overlap and Dilution. The following conditions are then
equivalent:

- For each ©, (Cut for sets) holds
- IfI' ¥ ® then there is a partition (O, Or) of & such thatI' C ©,, ® C Op and O ¥ O, (Cut for &)
- HTu{}FDdPUB, foreach €B®,andT’TUB F @, thenT' - ® (Symmetric Cut)

12




IDSTA @ surs

"Set (of things) -Set (of things)” consequence relation: a syntactic characterisation

Definition: Let Z be a set. A relation F C (&) X (&) is called a symmetric consequence relation, if it
satisfies the following for every ®,0,T", A:

- I' ®, whenever®nNnl' # @ (Overlap)
- ' o, thenTUAFDUB (Monotonicity / Dilution)
- fTr'u®,F ®U0,, for each quasi-partition (0,,0,) of ®, then I' - ® (Cut for sets)

e A symmetric consequence relation is called finitary if, for every I', ®:

- IfT' - ®, then there are finite A CI" and ® C ® such that A = ® (Finitariness)

One may “read” a symmetric consequence relation as something like /\F o \/CI)
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"Set (of things) -Set (of things)” consequence relation: a semantic characterisation

124
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"Set (of things) -Set (of things)” consequence relation: a semantic characterisation

Consider a valuation 8 : & — {a,r}. We extend 8 : @9(&) — {a,r, x } by setting
a ifVyel :8(y) =a

g:I'>qr  ifVyel: 8@y =r.
* else

Given a collection @ and a set of “things” I' C £, we then define ©,(I') = {8 € © | 3(I') = a} and
&) ={3€@ |8 =r},

e Definition: Let & be a set and, and & a collection of possible worlds. Then, for every I', ® C £, we define
[Fe@iff ©,IN NS (D) =00.
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"Set (of things) -Set (of things)” consequence relation: a semantic characterisation

Consider a valuation 8 : & — {a,r}. We extend 8 : @9(&) — {a,r, x } by setting
a ifVyel :8(y) =a
g:I'>qr ifVyel:8(p) =r.
* else
Given a collection @ and a set of “things” I' C £, we then define ©,(I') = {8 € © | 3(I') = a} and
ecI)={sec|s()=r},
e Definition: Let & be a set and, and & a collection of possible worlds. Then, for every I', ® C £, we define
Ig @ iff ©,(0) NS (D) = @.

e Fact: Let & be a set and, and © a collection of possible worlds. Then the relation ¢ is a symmetric

consequence relation. |
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"Set (of things) -Set (of things)” consequence relation: completeness

Theorem (completeness for symmetric consequence): Let (&, =) be a symmetric consequence system.
Then it is always possible to find a class of possible words @ over A such that - =F¢ .

Proof: Fix an arbitrary pair (I', @) such that I' ¥* ®@. Then, by Cut for &, there is a partition (0,,0,) of &
such thatI' C ©,,® C ©, and B, ¥ O,. So, let ©*, the collection of the valuations (characteristic functions)
corresponding to such pairs so that assign a to “things” in ®, and r in ®,. Consider the induced

consequence relation Fg..

v

Again, the idea is that the partition (0,, ©,) of & induces a possible world via the corresponding accept/truth
set (predicate) ®,, and its dual (complementary) reject/false set (predicate) ©,.
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et (of things) -Set (of things)” consequence relation: completeness

Theorem (completeness for symmetric consequence): Let (&, =) be a symmetric consequence system.
Then it is always possible to find a class of possible words @ over A such that - =F¢ .

Proof: Fix an arbitrary pair (I', @) such that I' ¥* ®@. Then, by Cut for &, there is a partition (0,,0,) of &
such thatI' C ©,,® C ©, and B, ¥ O,. So, let ©*, the collection of the valuations (characteristic functions)
corresponding to such pairs so that assign a to “things” in ®, and r in ©,. Consider the induced
consequence relation Fg.. Clearly, from what precedes, if 2 ¥ A then E Fg. A.

For the other direction, let us assume that, for some pair (E, A), & - A holds. Towards a contradiction, let
us suppose E Fg« A. This means that there is a pair (I', @) and a partition (0,, ®,) of & with
['CO,®CO suchthatl' ¥ ®, 0, ¥ O,and 2 C 0,, A C O,. However, O, - O, by applying dilution to

E A, acontradiction. Hence E g A.
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"Set (of things) -Set (of things)” consequence relation: absoluteness

Theorem (absoluteness for symmetric consequence): Any semantics characterises a unique symmetric

consequence system.

Proof: Fix an arbitrary family of valuations © and its induced symmetric consequence system (&, ¢ ).
Considerthe class ©(Fg ) = {8 C L |V[LO: T'Fg P AT C 3) = (PN 3 # @)} of valuations that
respect F-g. We need to check that &( g ) = ©.

IDSTA @ surs
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"Set (of things) -Set (of things)” consequence relation: absoluteness

Theorem (absoluteness for symmetric consequence): Any semantics characterises a unique symmetric

consequence system.

Proof: Fix an arbitrary family of valuations © and its induced symmetric consequence system (&, ¢ ).
Considerthe class ©(Fg ) = {8 C L |V[LO: T'Fg P AT C 3) = (PN 3 # @)} of valuations that
respect -g. We need to check that &( g ) = ©. Clearly ©( g ) 2 ©.

For the other direction, suppose 8 € &, and consider the partition (8, Z£\8). Recall that I' g © iff there is
no 8’ € @ such that I' C 8’ and ® C £\8'. Since trivially there is no 8’ € & such that 38 C 8’ and

ZL\8 C £\3', we have that 8 ¢ £\ 8. But again, notice that trivially despite 8 ¢ Z£\8 and 8 C 3,

Z\8 N8 =, meaning that 8 € &( ¢ ).
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Varieties of desirabilities
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COYHMHEHIA

H. T. TEPHEIIEBCKATO.



https://en.wikipedia.org/wiki/Russian_language
https://en.wikipedia.org/wiki/Romanization_of_Russian
https://en.wikipedia.org/wiki/Nikolai_Chernyshevsky




This is for simplicity. When needed,

we make it explicit though.




So, from now on here for simplicity we are essentially

over R". But make explicit when needed.
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The coin experiment: accepting partial gain

geL” ={glg>0}
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The coin experiment: addition
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The coin experiment: avoiding sure loss
¢
g€ L ={g|supg <0}
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(ASG) accepting sure gain FTCH

0 (APG) accepting partial gain L>CH

Zé (PS) positive scaling A CH,A1>0

H% (ADD) addition H+FCH

&O (ASL) avoiding sure loss L NK =g

48)_5 (APL) avoiding partial loss LNFH =0

g (ANP) avoiding non positivity L*NHK =02

é (ASQ) avoiding status quo 0&H

:415 (ANU) avoiding negative unit -1¢x

S (CL) closure fex, fleeOVk>0:f+ekex y
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Theory of desirable gambles: coherence

i

e Definition: A set Z C Z(Q) is coherent if it satisfies
(APG) &L~ C H
(PS)AK C K, ford >0
(ADD) X + X C H
(APL) “"NF =
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e Definition: A set Z C Z(Q) is coherent if it satisfies

(PSYAFK C H, forA >0
(ADD) X + X C H
(AP L“NFH =@
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e Definition: A set Z C Z(Q) is coherent if it satisfies

(PSYAFK C K, forA >0
(ADD) X + Z C H
(APL) “NF =@
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e Definition: A set Z C Z(Q) is coherent if it satisfies

(PSYAFK C H, forA >0
(ADD) X + FH CH
(AP “NFH =@
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Theory of desirable gambles: coherence (a bit stronger)

e Definition: A set Z C Z(Q) is coherent if it satisfies

(PSYAFK C H, forA >0
(ADD) X + X C K

The collection of all set of desirable gambles over Z(Q) that
are coherent is then denoted by C(Z(Q))
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Theory of desirable gambles: coherence (a bit stronger)

Fact: (APG+PS+ADD+ASQ) implies (APL) and thus (ANP)

e Definition: A set Z C Z(Q) is coherent if it satisfies
(APG) &L~ C H
(PS)AK C K, ford >0
(ADD) X + X C H

The collection of all set of desirable gambles over Z(Q) that
are coherent is then denoted by C(Z(L)). We say that

K € C(Z(Q)) is maximally coherent if there is no

K'e C(Z(Q)) such that # C K, and denote the collection of
maximally coherent sets by M(Z(Q)).
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Theory of desirable gambles: the structure of coherent sets

Lemma (Couso & Moral 2011). Let Z € C(Z(Q)) but g & & , with g # 0. Then the following hold
1. posi(Z U {—g}) € C(ZL(Q))
2. it—g& K, then K& :=posidU{glu{—-g+f|feH}) € C(Z)

Where the positive hull operator is defined as posi(X) := {uf+ g | f.g € X, and u, 1 > 0}.

IDSTA @ surs
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Th

Since one can check that the first point of the Lemma readily implies that any # € C(Z(£2)) such that either

IDSTA @ surs

eory of desirable gambles: the structure of coherent sets

Lemma (Couso & Moral 2011). Let Z € C(Z(Q)) but g & & , with g # 0. Then the following hold
1. posi( U {—g}) € C(ZL(Q))
2. it—g& K, then Hé :=posidU{glu{—-g+f|feH}) € C(Z)

Where the positive hull operator is defined as posi(X) := {uf+ g | f,g € X, and u, 1 > 0}.

g € K or—ge XK, foreach g € L(Q)\{0}, cannot be extended to a coherent strict supset, we get that :

Theorem (Couso & Moral 2011): The maximal coherent sets of desirable gambles over £ () are the
semispaces at the origin (i.e. convex sets & C Z(£2) without the origin 0 and such that either g € # or
—g € K for each g € Z(Q)\{0}) that contain the positive orthant Z(Q)”.

159




% IDSTA @ sursi

Theory of desirable gambles: the structure of coherent sets

The construction is reminiscent of the ultrafilter procedure used e.g. to prove

Lemma (C compactness in classical logic 1old
1. posi(¥ U{—g}) € L(Z(L2))
2. it—g& K, then K& :=posiFU{glu{—g+f|fe H}) € C(Z)

Where the positive hull operator is defined as posi(X) := {uf+ g | f,g € X, and u, 1 > 0}.

The second point of the Lemma, joint with the previous characterisation of maximal coherent sets, provides a
recursive way to complete a coherent set Z € C(Z(£2)) and construct a maximal one containing it by including a
gamble and excluding its “inverse/negation”:

e SetH,=X.

e Consider #,2 #, it #, € M(Z(Q)), stops.

e Else for some g € Z(Q)\{0} both g, — g &€ #,, and define &, := (#,)*.

One can actually prove that there is a finite k such that # | = &, € M(Z(L)). That is

Theorem (Couso & Moral 2011): It & € C(ZL(Q)), there is ' € M(&Z(Q)) such that #' 2 K.
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Theory of desirable gambles: the structure of coherent sets

We thus have that

Theorem (Couso & Moral 2011): t # € C(Z£(L2)), then H = ﬂ {(F' e M(ZQ) | X CH'}.

Proof. Obviously # C ﬂ (H' e M(Z(Q)) | X C K}, and assume there is
gE (ﬂ (K e M(Z(Q)) | Z C %’})\%. Then posi(Z U {—g}) € C(ZL(Q)) and there is Z' € M(Z(Q))
such that &' 2 J . But by construction g, — g’ € &', a contradiction.

And thus we get that:

Corollary: (C(Z(L2)) U {Z}, C ) is a dually atomic complete lattice.
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Theory of desirable gambles: natural extension, first try

Sets of desirable gambles: Conditioning,
representation, and precise probabilities

(Couso & Moral 2011)

Let 2 = {w wy} denote the (finite) set of outcomes. We assume that there is an unknown outcome value belonging
to 2. A gamble on 2 is a bounded mapping from £2 to R, i.e,, X : £ — R. Gambles are used to represent an agent's beliefs
and information. If an agent accepts a gamble X, then the value X (w) represents the reward she would obtain if w is the true
unknown outcome (this value can be negative, in which case it represents a loss).

Let £ denote the set of all gambles defined on 2. For X, Y € £,let X > Y mean that X(w) > Y(w) forall w € £2, and let
X > Y mean thatX > Y and X(w) > Y(w) for some w € £2.

Asubset D of £ is said to be a coherent set of desirable gambles relative to £ [14] when it satisfies the following four axioms:

D1. 0 €D,

D2. ifX € Land X > OthenX € D,

D3. ifX € Dand c € Rwithc > OthencX € D,
D4. ifX e DandY € DthenX + Y € D.

If F is an arbitrary set of gambles, then the set of all gambles obtained by applying axioms D2, D3, and D4 is called the
set of gambles generated by F and it is denoted by F. If this set is coherent (0 ¢ F) then it will be called its natural extension
(the minimum coherent set containing ). If 0 € F we will say that F does not avoid null gain. Natural extension will make
sense only when F avoids null gain. If X < 0 and X € F, we will say that F does not avoid partial loss.

It is immediate that

n
F={D_AiXi: 2 >0, [X;e ForX; > 0], n>1

i=1
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Theory of desirable gambles: natural extension, first try

Let 2 = {w wy} denote the (finite) set of outcomes. We assume that there is an unknown outcome value belonging
to 2. A gamble on 2 is a bounded mapping from £2 to R, i.e,, X : £ — R. Gambles are used to represent an agent's beliefs
and information. If an agent accepts a gamble X, then the value X (w) represents the reward she would obtain if w is the true
unknown outcome (this value can be negative, in which case it represents a loss).

Let £ denote the set of all gambles defined on 2. For X, Y € £,let X > Y mean that X(w) > Y(w) forall w € £2, and let
X > Y mean thatX > Y and X(w) > Y(w) for some w € £2.

Asubset D of £ is said to be a coherent set of desirable gambles relative to £ [14] when it satisfies the following four axioms:

D1. 0 € D,

D2. ifX € Land X > OthenX € D,

D3. ifX € Dand c € Rwithc > OthencX € D,
D4. ifX e DandY € DthenX + Y € D.

If F is an arbitrary set of gambles, then the set of all gambles obtained by applying axioms D2, D3, and D4 is called the
set of gambles generated by F and it is denoted by F. If this set is coherent (0 ¢ F) then it will be called its natural extension
(the minimum coherent set containing ). If 0 € F we will say that F does not avoid null gain. Natural extension will make
sense only when  avoids null gain. If X < 0 and X € F, we will say that F does not avoid partial loss.

It is immediate that

Fact: The operator posi( - U Z”) : (&) - g(Z) is a closure operator, and the collection
of its closed sets is a strict supset of C(£) U { £}, since e.g. £~ U {0} # L is closed but
not coherent, or any closed halfspace containing the positive orthant and the origin in the

jambles: Conditioning,
d precise probabilities

011)

boundary.
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Here APL and not ASQ is the defining coherence condition (hence weaker form of coherence).
Still, we have that the operator posi( - U £”) : g9(&£) — g(Z) is a closure operator, but the
collection of its closed sets is a strict supset of C(Z) U { £}, since, again, it includes any closed

halfspace containing the positive orthant and the origin in the boundary.

Ch.1 Desirability (Erik Quaeghebeur 2014)

1.2.4 Natural extension

Given an assessment A, the fact that all gambles in £ (&) must be desirable, and the con-
structive rationality criteria, there is a natural extension,

E(A) = posi (A U LH(X)) = posi AU LT(AD U (posi A + LT(X)). (1.9)

The rightmost expression follows from Equation (1.3) ald the fact that £*(X’) is already a
convex cone.
An important result links the natural and the least cojnmittal coherent extensions:

Theorem 1.1 The natural extension E(A) of A C L(X)|coincides with its least committal
coherent extension [ | D 4 if and only if A avoids partial'loss.

Proof. By construction, the natural extension £(.A) must be included in any coherent exten-
sion, if they exist, as they must satisfy Criteria (1.1), (1.2), and (1.4): it is therefore the least
committal one if it is coherent itself. This is the case if and only if it also satisfies (1.5). From
Equation (1.9) we see that £(A)’s pointwise smallest gambles lie in posi .A or £*(X’), which
proves the necessary equivalence of .A avoiding partial loss, i.e., posi A N L™(X) = @, and
EANL(X)=4. o

Natural extension is the prime tool for deductive inference in desirability: given an initial
assessment, it allows us to straightforwardly deduce which gambles must also be desirable
in order to satisfy coherence, but makes no further commitments.




Theory of desirable gambles: another view on natural extension

* In the literature, the natural extension within the theory of desirable gambles and its
characterisation theorem are not always defined directly through the posi operator, see e.g.:

International Journal of Approximate Reasoning 53 (2012) 363-395

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

Exchangeability and sets of desirable gambles

Gert de Cooman, Erik Quaeghebeur *

Ghent University, SYSTeMS Research Group, Technologiepark — Zwijnaarde 914, 9052 Zwijnaarde, Belgium

ARTICLE INFO ABSTRACT

Article history: Sets of desirable gambles constitute a quite general type of uncertainty model with an
Available online 13 December 2010 interesting geometrical interpretation. We give a general discussion of such models and
their rationality criteria. We study exchangeability assessments for them, and prove coun-
Keywords: terparts of de Finetti’s Finite and Infinite Representation Theorems. We show that the finite
Sets of desirable gambles representation in terms of count vectors has a very nice geometrical interpretation, and
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Theory of desirable gambles: another view on natural extension

* In the literature, the natural extension within the theory of desirable gambles and its
characterisation theorem are not always defined directly through the posi operator, see e.g.:

International Journal of Approximate Reasoning 53 (2012) 363-395
Contents lists available at ScienceDirect
International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

Exchangeability and sets of desirable gambles

Gert de Cooman, Erik Quaeghebeur *

Ghent University, SYSTeMS Research Group, Technologiepark — Zwijnaarde 914, §052 Zwijnaarde, Belgium

| will try to convince you that, from a logical pow, what is done e.g. here is the right approach.

Keywords: terparts of de Finetti’s Flmte and Infinite Representation Theorems. We show that the finite
Sets of desirable gambles representation in terms of count vectors has a very nice geometrical interpretation, and




IDSTA @ surs

Theory of desirable gambles: another view on natural extension

First, remember that (C(&) U { <}, C ) is a dually atomic complete lattice. Thus , by putting all
things together, we have that:

e Theorem: The operator & : (&) — (&) defined as &() := ﬂ (X eC)|AdCH}isa
closure operator such that €.\ {Z} = C(&). Moreover it holds that
E(d) =K eMZQ) | o CH).
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Theorem 1 (Natural extension). Let 2" be a linear subspace of 4(Q2) and let ¢ C " be a convex cone containing the zero
gamble 0. Consider an assessment .« C A, and define its (4", %)-natural extension:*

e () = ﬂ{.@ € Dixe) () : o CR}.
Then the following statements are equivalent:

(i) o/ avoids non-positivity relative to (", %);
(ii) « is included in some set of desirable gambles that is coherent relative to (4", %);
(ili) &n ) (L) # A
(iv) the set of desirable gambles & «) (/) is coherent relative to (A", %);
(V) &x) () is the smallest set of desirable gambles that is coherent relative to (4", ) and includes <.

3 We require that % should be strictly included in " (% # ") because otherwise the ordering > would be trivial: we would have that f > g for all f, g € 1.
4 As usual, in this expression, we let 0 = .

366 G. de Cooman, E. Quaeghebeur / International Journal of Approximate Reasoning 53 (2012) 363-395

When any (and hence all) of these equivalent statements hold, then
&) () = POSi(A oo U ). )

This shows that if we have an assessment .o# with a finite description, we can represent its natural extension on a computer
by storing a finite description of its extreme rays.
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Theory of desirable gambles: the case of R"

e Corollary: Let o/ C R" be a set of assessments. Then, for every g € R" the following are
equivalent

1.g¢& &(A)
2.there is Z € C(R") such that &/ C # butg & &
3. there is # € M(R") such that & C # butg & #.

The equivalence between 1 and 3 is a version of the hyperplane separation theorem but for maximal
coherent sets. Recall that the latter coincide with semispaces at the origin (i.e. convex sets # C R"
without the origin 0 and such that either g € & or —g € # for each g € R") that contain the positive
orthant (R")”.
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Theory of desirable gambles: natural extension

e Definition: Given a set of assessments
g C ZL(L), its natural extension is the set

E(A) = ﬂ (e C(LQ)|dCH).
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Theory of desirable gambles: natural extension

e Definition: Given a set of assessments
g C ZL(L), its natural extension is the set

E(A) = ﬂ (e C(LQ)|dCH).

'®
\ 4
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Theory of desirable gambles: natural extension

e Definition: Given a set of assessments
g C ZL(L), its natural extension is the set

E(A) = ﬂ (e C(LQ)|dCH).
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Theory of desirable gambles: natural extension

e Definition: Given a set of assessments
g C ZL(L), its natural extension is the set

E(A) = ﬂ (e C(LQ)|dCH).

173




IDSTA

i

Theory of desirable gambles: natural extension

e Definition: Given a set of assessments
g C ZL(L), its natural extension is the set

E(A) = ﬂ (e C(LQ)|dCH).

A maximal coherent set of desirable gambles, aka a semispace at the origin
(i.e. convex sets F C R? without the origin 0 and such that either g € # or
—g € K for each g € R?) that contain the positive orthant (R?>.
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Theory of desirable gambles: natural extension

e Definition: Given a set of assessments
g C ZL(L), its natural extension is the set

E(A) = ﬂ (e C(LQ)|dCH).

Another maximal coherent set of desirable gambles
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Theory of desirable gambles: natural extension

e Definition: Given a set of assessments
g C ZL(L), its natural extension is the set

E(A) = ﬂ (e C(LQ)|dCH).

()= (K e C(Z@Q) | o CH)
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Theory of almost desirable gambles

In the context of the theory of almost desirable gambles the two views actually coincide.
Definition: A set & C Z(Q) is coherent if it satisfies
(APG) &~ C X
(PS) AKX C H#, foriA >0
(ADD) X + X CH
CLfe X, ifleec (O,DVkE>0:f+ceH
ASLL NFH =g

Given the preceding conditions, (ASL) is equivalent with
(ANU) -1 ¢ &
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Theory of almost desirable gambles

Similarly to what done before, by

e C_(Z(Q)) we denote the collection of all coherent sets of almost desiderable gambles,

e M, (Z()) we denote the collection of all maximal coherent sets of almost desiderable

gambles.

Notice that maximal coherent sets are simply the closed halfspaces containing the positive orthant and
the origin in the boundary.

IDSTA @ surs
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Theory of almost desirable gambles

e Definition: Given a set of assessments &/ C Z(€), its natural extension is the set
& (o) := cl(posi(f U L)),

where posi(X) (= {uf+1g| f,g € X, and u, 4 > 0}.
[
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Theory of almost desirable gambles

e Definition: Given a set of assessments &/ C Z(€), its natural extension is the set
& (o) := cl(posi(f U L)),

where posi(X) 1= {uf + g | f,g € X, and u, 4 > 0}. 1
O

oA U L=
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Theory of almost desirable gambles

e Definition: Given a set of assessments &/ C Z(€), its natural extension is the set
& () := cl(posi(f U L)),
where posi(X) (= {uf+1g| f,g € X, and u, 4 > 0}.
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1. The lattice (C (&)U {Z}, C ) is complete and dually atomic, and the collection of its dual
atoms coincides with M (&), i.e. the collection of all closed halfspaces containing the
positive orthant and the origin in the boundary.

2. The natural extensions operator & (- ) := cl(posi( - U £?)) : (&) = () is a closure
operator, and the collection of its closed sets coincides with C (&£) U { £}.
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Theory of almost desirable gambles: characterisation

Hence, from the previous facts, the definition of coherence in the theory of almost desirable
gambles and the properties of posets, closure operators and dually atomic complete lattices, we
obtain that:

e Corollary: Given a set of assessments & C £ (£2), the following are equivalent
1.€,(d) e C(L),
2.8 ()= {H €C(D) | & C K},
3.8 (e)=({H eM(D) | C K},

This is essentially provides a variant of the classical
4.—-1¢& & () separation theorem for closed convex sets.

5.8(A) #+ &
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To sum up
DG TADG
fini h
defining c.o. erence APL ASO ASL
condition
consequence posi Cl on coherence posi Cl on coherence cl-posi
(closure) operator
corresponding
theories (closed sets) no yes no yes yes
are all coherent
complete lattice C +
no no no yes yes

L dually atomic
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If you add O to a semispace at the origin K, you get a coherent dual atom,
and K is not the intersection of any coherent dual atom extending it

To sum up
TDG TADG
defining c?berence APL ASO ASL
condition
consequence pOSi Cl on coherence POSi Cl on coherence cl-posi

(closure) operator

corresponding
theories (closed sets) no yes no yes yes
are all coherent

complete lattice C +
: no no no yes yes
L dually atomic
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The difference between deductive closure and coherence,
from a logical perspective, is related to the phenomenon of

To sum up .
paraconsistency
TDG TADG
defini h
efining c.o. erence APL ASQ ASL
condition
conseguence : : :
A POSi Cl on coherence 0Je Cl on coherence cl-posi
(closure) operator
corresponding
theories (closed sets) no yes no yes yes
are all coherent
complete lattice C +
no no no yes yes

L dually atomic
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Trying (again) to make a bit of order

Belief models: An order-theoretic investigation

volume 228

Gert de Cooman (gert .decooman@ugent .be)
Universiteit Gent, Onderzoeksgroep SYSTeMS, Technologiepark — Zwijnaarde 914, 9052
Zwijnaarde, Belgium

September 7, 2010

Abstract. I show that there is a common order-theoretic structure underlying many of the
models for representing beliefs in the literature. After identifying this structure, and studying it
in some detail, I argue that it is useful. On the one hand, it can be used to study the relationships
between several models for representing beliefs, and I show in particular that the model based
on classical propositional logic can be embedded in that based on the theory of coherent lower
previsions. On the other hand, it can be used to generalise the coherentist study of belief
dynamics (belief expansion and revision) by using an abstract order-theoretic definition of the
belief spaces where the dynamics of expansion and revision take place. Interestingly, many of
the existing results for expansion and revision in the context of classical propositional logic
can still be proven in this much more abstract setting, and therefore remain valid for many
other belief models, such as those based on imprecise probabilities.

Dar‘aconsistency
the logical \ o the inconsist

Keywords: Belief model, belief revision, classical propositional logic, imprecise probability,
order theory, possibility measure, system of spheres
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Belief models

Definition: A belief structure is a quadruple (A, <, cl, C) where
e (A, <)isacomplete lattice, and a € A is called a belief model,

e cl:A — A aclosure operator over (A, <), and a non-empty C C €, called a coherence predicate,
such that
1. itis reverse compatible with cl, thatis: if a < b and cl(b) € C, then cl(a) € C, meaning in particular
that cl(0) € C,
2. (CU{l}, £)isa closure system, meaning in particular that C is closed under non-empty infima
(i.e. /\B € Cforevery @ # B C ()
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Belief models

Definition: A belief structure is a quadruple (4, <, cl, C) where
e (A, <)isacomplete lattice, and a € A is called a belief model,
e cl:A — A aclosure operator over (A, <), and a non-empty C C €, called a coherence predicate,
such that
1. itis reverse compatible with cl, thatis: if a < b and cl(b) € C, then cl(a) € C, meaning in particular
that cl(0) € C,

2. (CU{l}, £)isa closure system, meaning in particular that C is closed under non-empty infima
(i.e. /\B € Cforevery @ # BC ()

fCu{l}=G

o the belief structure is called classical, and paraconsistent otherwise.

The idea is that a belief structure is classical whenever the deductive closure of every inconsistent belief model is trivial.
Paraconsistent belief structures are structures in which, for closed models, being inconsistent is not tantamount to being
trivial. Stated otherwise, inconsistency is not ‘explosive’.
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lief models

Definition: A belief structure is a quadruple (A, <, cl, C) where
e (A, <)isacomplete lattice, and a € A is called a belief model,

e cl:A — A aclosure operator over (A, <), and a non-empty C C €, called a coherence predicate,
such that

1. itis reverse compatible with cl, thatis: if a < b and cl(b) € C, then cl(a) € C, meaning in particular
that cl(0) € C,

2. (CU{l}, £)isa closure system, meaning in particular that C is closed under non-empty infima
(i.e. /\B € Cforevery @ # B C ()

fCuf{ll=C

A classical belief structure for which (C U {1}, <) is dually atomic is said to be strong.

o the belief structure is called classical, and paraconsistent otherwise.
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Because of this, we will actually be able to provide prove a strong,

“natural” completeness theorem in term of probabilistic semantics

To sum up again
- _
TDG TADG
defining coherence
_— APL ASQ ASL
condition
closure operator posi Cl on coherence posi Cl on coherence cl-posi
belief structure yes yes yes yes yes
classical no yes no yes Y €S (and thus cl-posi is Cl on
coherence)
strong no no no yes yes
AN\ /|
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Desirability as a (abstract) logic
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A Logical View

Nic Wilson' and

Abstract. Imprecise Probability (or Upper and Lower Prob-
ability) is represented as a very simple but powerful logic
Despite having a very different language from classical log-
ics, it enjoys many of the most important properties, which
means that some extensions to classical logic can be applied
in a fairly straightforward way. The logic is extended to allow
qualitative grades of belief, which can be used to rep

d of caution, and this is a

belief revision and non-monotonic inference for probability
statements. We also construct a theory of default probabil-
ity which is based on a variant of Reiter’s d.

can be used to express and reason with default probability

statements

1 INTRODUCTION

The best understood and most highly developed theory of un-
certainty is Bayesian probability. There is a large literature on
its foundations and there are many different justifications of
the theory; however, all of these assume that for any propo-
sition a, the beliefs in a and —a are strongly tied together
Without compelling justification, this assumption greatly re-
stricts the type of information that can be satisfactorily rep-

of Probability

Serafin Moral®

Apart from being a simple and elegant way to express this
theory of probability, there are other benefits of expressing
it as a logic. It brings into the lo; an’s domain this seman-
tically very well founded, fairly well-behaved and expressive
representation of beliefs. Because the logic has many of the
properties of classical logics, it means that augmentations of
classical logic can be applied relatively easily to this logi

Imprecise Probability does not distinguish caution from ig-
norance; in section 3 we look at a way of extending the theory
to allow qualitative grades, which can be used to represent de-
grees of caution. Like classical logic, it is very conservative,
and is monotonic. It therefore seems natural to look at ex-
tensions which tentatively allow stronger conclusions to be
drawn, but avoid inconsistency. Three examples of this are
given; in section 4, work on belief revision and non-monotonic
inference relations is extended to this logic, which leads to

ays of resolving inconsistencies, and in section 5, a version
of Reiter’s Default Logic is applied, which allows more com-
plex tentative assumptions.

2 THE LOGIC OF GAMBLES

Let Q be a finite set of possibilities, exactly one of which
must be true. A gamble on Q is a function from Q to R. If

Complete probabilistic semantics for desirability as logic: first attempts

A Probabilistic Logic Based on the
Acceptability of Gambles *

Peter R. Gillett »*, Richard B. Scherl®!, Glenn Shafer?

utgers Business School—Newark and New Brunswick

b Monmouth University, New Jersey

Abstract

This article presents a probabilistic logic whose sentences can be interpreted as
asserting the acceptability of gambles described in terms of an underlying logic.
This prob. tic logic has a concrete syntax and a complete inference procedure,
and it handles conditional as well as unconditional probabilities. It synthesizes Nils-
son’s probabilistic logic and Frisch and Haddawy’s anytime inference procedure with
Wilson and Moral’s logic of gambles.

Two distinct semantics can be used for our probabilistic logic: (1) the measure-
theoretic semantics used by the prior logics already mentioned and also by the
more expressive logic of Fagin, Halpern, and Meggido and (2) a behavioral seman-

Wilson & Moral introduced a (semi-formal) logical calculus for almost desirability and show finite completeness
with respect to probabilistic semantics.

Later Gillet, Scherl & Shafer adapted the calculus to desirability, incorporated the conditioning operation and
proved finite completeness.
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In this talk we are only interested, if not explicitly stated, to @ SUPSI
sentential / propositional logic systems.

To get this just fix a set of rules schemas

A bit more structure, pledse

e We are usually interested in the “meaning” of connectives, and in characterising the associated foimal
deductive inferences (reasoning).

e So you usually need first to fix a set of connectives L and a language (an algebra) over (of signatue) L....

e ... and then define a consequence relation over the set of formulas.

In the abstract algebraic perspective, a sentential logic is a consequence system (Fm, =) given by the absolutely free L-algebra
Fm generated by a set of propositional variables V (i.e the smallest L-algebra containing V and such that for every o:her L
-algebra A, amap h : V — A can uniquely be extended to a homomorphism A’ : Fm — A) and where |- satisfies structurality: if
I' = @ then (') = h(g), for every substitution (endomorphism ) A : Fm — Fm.
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A bit more structure, please

We are usually interested in the “meaning” of connectives, and in characterising the associated formal
deductive inferences (reasoning).

So you usually need first to fix a set of connectives L and a language (an algebra) over (of signature) L....

... and then define a consequence relation over the set of formulas.

- characterisation: provide a list of rules R, e.g. Hilbert sytle or Gentzen style, via structural

ones, corresponding to the abstract properties of a consequence relation, and specific rules for
connectives

- characterisation: make reference to “something else”, external.

IDSTA @ surs
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A bit more structure, please

We are usually interested in the “meaning” of connectives, and in characterising the associated formal
deductive inferences (reasoning).

So you usually need first to fix a set of connectives L and a language (an algebra) over (of signature) L....

... and then define a consequence relation over the set of formulas.

- characterisation: provide a list of rules R, e.g. Hilbert sytle or Gentzen style, via structural

ones, corresponding to the abstract properties of a consequence relation, and specific rules for
connectives

- characterisation: make reference to “something else”, external.

Typically one is interested in having a relation semantics © (e.g. Kripke/possible world semantics), as it provides an intuitive
interpretation of the logic and a means to obtain information about it, and particularly obtaining a completeness results stating

196




IDSTA A poset (W, <) equipped with a valuation function 8, for each w € W @ SUPSI
such thatif w <w'then 8, C 3, .

A bit more structure, please

We are usually interested in the ” /e

o rmal
deductive inferences (reasoning). Q
e So you usually need first to fix a s ‘ / ire) L....
e ... and then define a consequenc \‘
. characterisation: pr \*Q ictural
ones, corresponding to the a or

connectives

- characterisation: make reference to “something else , external.

Typically one is interested in having a relation semantics @ (e.g. Kripke/possible world semantics), as it provides an intuitive
interpretation of the logic and a means to obtain information about it, and particularly obtaining a completeness results stating
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Many logics are closely related to a classes of algebraic structures, e.g. Boolean algebras (with operators), or Heyting algebras.
Now associating algebraic models to propositional logics is often achieved by an easy transcription of the syntactic specifications

“of such logics, e.g. through the associated Lindenbaum-Tarski algebras or through a transcription of a Gentzen-style calculus. As
a consequence, semantic modelling by such algebras is often not far removed from the syntactic treatment of the logics.

So you usually need first to fix a set of connectives L and a language (an algebra) over (of signature) L....

... and then define a consequence relation over the set of formulas.

- characterisation: provide a list of rules R, e.g. Hilbert sytle or Gentzen style, via structural
ones, corresponding to the abstract properties of a consequence relation, and specific rules for
connectives

- characterisation: make reference to “something else”, external.
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Many logics are closely related to a classes of algebraic structures, e.g. Boolean algebras (with operators), or Heyting algebras.
Now associating algebraic models to propositional logics is often achieved by an easy transcription of the syntactic specifications

“of such logics, e.g. through the associated Lindenbaum-Tarski algebras or through a transcription of a Gentzen-style calculus. As
a consequence, semantic modelling by such algebras is often no: far removed from the syntactic treatment of the logics.

So you usually need first to fix a set of connectives L ai d a language (an algebra) over (of signature) L....

... and then define a con

Consider classical logic (Z, ¢ ).

>

characteris Fix any theory (closed set of formulas) I', and define the congruence 8 such thar @0y

ones, corresponding iff (1, ¢ o, wand I,y o, ).

connectives Then the quotient algebra Fm/6r is a boolean algebra (check), and given the valuation

. characteris 8 g {a if /0 € /0
r else
This is a (canonical) interpretation of (£, ¢ ) such thatif I' F¢ @ then " F; ¢.

It is then immediate to check that ¢ =Fgi= ﬂ I—Q,r
I'CFm
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Many logics are closely related to a classes of algebraic structures, e.g. Boolean algebras (with operators), or Heyting algebras.
Now associating algebraic models to propositional logics is often achieved by an easy transcription of the syntactic specifications

“of such logics, e.g. through the associated Lindenbaum-Tarski algebras or through a transcription of a Gentzen-style calculus. As
a consequence, semantic modelling by such algebras is often not far removed from the syntactic treatment of the logics.

What is the relation between this two views?

So you usually need first to fix a set of connectives L and a language (an algebra) over (of signature) L....

... and then define a consequence relation over the set of formulas.

- characterisation: provide a list of rules R, e.g. Hilbert sytle or Gentzen style, via structural
ones, corresponding to the abstract properties of a consequence relation, and specific rules for
connectives

- characterisation: make reference to “something else”, external.

Typically one is interested in having a relation semantics @ (e.g. Kripke/possible world semantics), as it provides an intuitive
interpretation of the logic and a means to obtain information about it, and particularly obtaining a completeness results stating

200




IDSTA

i

A bit more structure, please

defines
Gentzen-system R

CHD
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Clearly you are interested in a
completeness theorem here too

A bit more structure, please

"generates”
defines
Gentzen-system R (Z,F)
defines

9]
n
0
3

defines L“)’ -
o 9
E 9
O

relational models

algebraic models
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A bit more structure, please

“generates”
defines :
Gentzen-system R (Z,F) algebraic models
defines
0 A
0 °
o
3 .
defi = °
Ines ko GE) 0 .
Q < HE °
3 .
@) f, o ® ¢

relational models

IDSTA @ surs

Clearly you are interested in a
completeness theorem here too
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A bit more structure, please

Clearly you are interested in a
completeness theorem here too

"generates”

defines

Gentzen-system R (Z,F)

defines

9]
(92]

We are interested in representation theorems for a class of algebras which
involves representing elements of those algebras as subsets of some universal set
(plus some structure). E.g.:

* Stone’s theorem for distributive lattices states that each such lattice is isomorphic
to a ring of sets, that is a collection of sets closed under binary intersection and
union (actually a subalgebra of the powerset algebra of its prime filters)

e Stone's theorem for Boolean algebras states that each such algebra is
isomorphic to an algebra of sets (actually a subalgebra of the powerset algebra
of its ultrafilters).

algebraic models

representation

theorem

set-theoretical
structures
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A bit more structure, please

defines
Gentzen-system R

defines

Clearly you are interested in a
completeness theorem here too

“generates”
(Z,F)
defines
9]
n
0
C
g £
0
a 2
E 9
O 5

relational models —

can be
turned into

algebraic models

C
@]
)
()
c
&
3 9
5
O o
o C
)

set-theoretical
structures
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A bit more structure, please

So, for simplicity, from now on a (abstract) logic is some
consequence system (A, =) where A is an algebra.

How to assess if (A, ) has, say, a conjunction? Do | need
to have a binary operator? And what about constant (or O-
ary operators) such as the falsum? How it relates with
coherence (consistency)? And negation?

More abstract perspective, we will ask for some structural
conditions in order to state that some form over A acts as/
represents a certain (well known) connective

= .| The Connectives
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The falsum
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The falsum

We can imagine to dispose in our language of some specific “thing” (constant, or O-ary connective in the
underlying algebra), let us denote it by L, that enables us to speak about coherence (or consistentcy): the
falsum.

Assume we pick L in the underlying language of a consequence system (A, =), we can thus readily

characterise a consistency predicate C, as follows:

- Cn(B)eC,iffB¥F L, withBC A,
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The falsum

We can imagine to dispose in our language of some specific “thing” (constant, or O-ary connective in the
underlying algebra), let us denote it by L, that enables us to speak about coherence (or consistentcy): the
falsum.

Assume we pick L in the underlying language of a consequence system (A, =), we can thus readily

characterise a consistency predicate C, as follows:

- Cn(B)eC,iffB¥F L, withBC A,

Clearly C| is closed under arbitrary non-empty intersections and, by exploiting monotonicity of Cn, itis
reverse compatible with Cn... Hence
e Fact: Given a consequence system (A, - ) and a designated element L € A, the 4-uple

(go(A), € ,Cn,C)) is a belief structure.
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The falsum

We can imagine to dispose in our language of some specific “thing” (constant, or O-ary connective in the
underlying algebra), let us denote it by L, that enables us to speak about coherence (or consistentcy): the
falsum.

Assume we pick L in the underlying language of a consequence system (A, =), we can thus readily

characterise a consistency predicate C, as follows:

- Cn(B)eC,iffB¥F L, withBC A,

Thus, we say that, given a consequence system (A, I ), a belief structure (go(A), C ,Cng,C) is definable if
there is a designated element L € A such thatC =C,.

IDSTA @ surs
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The falsum

Definition: Let (A, - ) be a consequence system. We say that L € A is a falsum for (A, ) if the following
principle holds, forevery b € A, and everyI' C A

» HI'F L1, thenT"Fb (ex-falso sequitur quod libet / L-elimination)

21
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The falsum

Definition: Let (A, - ) be a consequence system. We say that L € A is a falsum for (A, ) if the following
principle holds, forevery b € A, and everyI' C A

» HI'F L1, thenT"Fb (ex-falso sequitur quod libet / L-elimination)

From the definitions, we get that:
e Fact: Given a consequence system (A, - ), a definable belief structure (gp(A), C,Cn,,C)) is classical if

and only if L € A is a falsum.
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The falsum

Definition: Let (A, - ) be a consequence system. We say that L € A is a falsum for (A, ) if the following
principle holds, forevery b € A, and everyI' C A

» HI'F L1, thenT"Fb (ex-falso sequitur quod libet / L-elimination)

e Fact: Given a consequence system (A, - ), a definable belief structure (gp(A), C,Cn,C)) is classical if

and only if L € A is a falsum.
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A logical calculus for desirability over R": sequents

A sequent is a pair (I', g), also written I' > g, where I is a set of gambles over R", and g is a

gamble in R".

We read a sequent I' > g as “whenever Alice accepts I, she also accepts g”

IDSTA @ surs
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A logical calculus for desirability over R": structural rules
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A logical calculus for desirability over R": structural rules
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A logical calculus for desirability over R": structural rules

And finally, we (may) add a rule stating that L := 0 is a falsum

s L
\_t>dg

| -el
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A logical calculus for desirability over R": structural rules

All previous Gentzen-sytle rules constitute the calculus D for TDG; and denote by D~ the
system D without the rule for the elimination of the falsum.

A sequentI' > g is provable in a calculus X, and write I' - g, if there is a tree of finite depth
such that:

- itsroot is labelled by "> g,
- its leaves are labelled with axioms of X (a rule without premisses, e.g. APG), and

- each intermediate nodes is labelled according to the rules of X
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On simple completeness results and belief structures for TDG

It is obvious that the following hold
Forevery'U {9} CZ, I' g @ iffforevery A e M(&Z),I"' C A impliesp € A
e As we know, this is not true for D~

e When considering D~ and the corresponding TDG, the underlying belief structure is definable and
paraconsistent, whereas for D it is also definable but classical.

IDSTA @ surs
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On simple completeness results and belief structures for TDG

It is obvious that the following hold

Forevery'U {9} CZ, I' g @ iffforevery A e M(&Z),I"' C A impliesp € A

e As we know, this is not true for D~

e When considering D~ and the corresponding TCG, the underlying belief structure is definable and
paraconsistent, whereas for D it is also definable but classical.

What about a completeness theorem but wrt a probabilistic semantics?

IDSTA @ surs
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What about other forms of desirability?

What about almost desirability?

To get a calculus U for the theory of almost desirability such that
ForeveryI'U {¢} CZ, I'ty @ iffforevery AeM (&), I C Aimpliesp € A

e |tis enough to add the following infinitary rule for closure and re-formulate the falsum for -1

{I'P@+0om):n>0} (6>0)

I'bg
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A generalised theory of desirability
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Main source..........c.cocoiiiiiiiiiiiiiiiieeieieeeeeeeo.@and @another approach

ISIPTA 2023

Proceedings of Machine Learning Research 215:25-36, 2023

Closure Operators, Classifiers and Desirability

Alessio Benavoli ALESSIO.BENAVOLI@TCD.IE
School of Computer Science and Statistics, Trinity College Dublin, Ireland

Alessandro Facchini ALESSANDRO.FACCHINI@IDSIA.CH
Marco Zaffalon MARCO.ZAFFALON @IDSIA.CH
Dalle Molle Institute for Artificial Intelligence (IDSIA), USI-SUPSI, Lugano, Switzerland

Abstract

starts from the observation that the logical consistency

At the core of Bayesian probability theory, or dually of a set of linearly-desirable gambles can be checked by
desirability theory, lies an assumption of linearity of solving a binary linear classification problem. Then the
the scale in which rewards are measured. We revisit authors extend desirability to the nonlinear case by instead
two recent papers that extend desirability theory to the considering a binary nonlinear classification problem. This
nonlinear case by letting the utility scale be represented framework imposes the logical constraints of desirability
either by a general closure operator or by a binary theory by forcing the classifier to separate the non-negative

general (nonlinear) classifier. By using standard results
in logic, we highlight the connection between these
two approaches and show that this connection allows
us to extend the separating hyper plane theorem (which
is at the core of the duality between Bayesian decision

gambles (gaining money is desirable) from the negative ones
(losing money is undesirable). Moreover, theoretical results
and numerical algorithms are provided to learn classifiers
from a dataset made of accepted and rejected gambles for

theory and desirability theory) to the nonlinear case. three closure operators: conic hull, convex hull and the
Keywords: closure operators, classifiers, desirability, so-called orthant-hull (or monotonic-hull).
belief structure The works [15, 6] show that the previous approaches

to nonlinear-desirability [16, 18] can be seen as particular
cases of these formulations.

[cs.AlI] 10 May 2023

3

A theory of desirable things

Jasper De Bock

Abstract

Inspired by the theory of desirable gambles that is used to model uncer-
tainty in the field of imprecise probabilities, I present a theory of desirable
things. Its aim is to model a subject’s beliefs about which things are desirable.
What the things are is not important, nor is what it means for them to be
desirable. It can be applied to gambles, calling them desirable if a subject
accepts them, but it can just as well be applied to pizzas, calling them desir-
able if my friend Arthur likes to eat them. Other useful examples of things
one might apply this theory to are propositions, horse lotteries, or preferences
between any of the above. Regardless of the particular things that are con-
sidered, inference rules are imposed by means of an abstract closure operator,
and models that adhere to these rules are called coherent. I consider two types
of models, each of which can capture a subject’s beliefs about which things
are desirable: sets of desirable things and sets of desirable sets of things. A
crucial result is that the latter type can be represented by a set of the former.
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A generalised theory of desirability

Consider the underlying language & is given by a ordered vector space, with null element 0 and
(order) unit 1

The space of gambles that should be “objectively” accepted is thus &£~ := {g € £ | g > 0}.
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For the case of almost desirability, we consider

i

&>z .= {g e Z|g >0} also assume that we can equip the

. . . space with the order topology.
A generalised theory of desirability i pology

Consider the underlying language & is given by a ordered vector space, with null element 0 and
(order) unit 1

The space of gambles that should be “objectively” accepted is thus &£~ := {g € £ | g > 0}.

What we are going to saying in this part holds also in the
case discussed by Gert De Cooman on Thursday
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For the case of almost desirability, we also assume that
ZF* C P is a convex cone and thus that Cl(posi(Z*)) = Z*.

A generalised theory of desirability

Consider the underlying language & is given by a ordered vect >r space, with null element 0 and
(order) unit 1

The space of gambles that should be “objectively” accepted is thus &£~ := {g € £ | g > 0}.

* Now, assume that, for some reason, assessing in general that scme thing is objectively
acceptable is difficult, but we dispose of a series of criteria for which assessing if some thing is
acceptable in the sense of belonging to £* C £~ is doable.

- We also assume that it is always the case that 1 € &*

- And also assume that Z#* is a convex cone (hence posi(Z*) = Z*) and thus that the convex

Z* U {0} is pointed at 0.
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A generalised theory of desirability

Definition: Consider a convex cone &* C ¥~ as described before, and its induced partial order f <* g iff
(g —f) € L*. We say that a closure operator cl over (g2(Z), C ) is compatible with Z* if and only if

- respect assessable tautologies: cl(g) = £*
- satisfies <*-dominance : if f € cl(A), and f <* g, then g € cl(A)

IDSTA @ surs
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For the case of almost desirability, we first ask that C is
definable by -1, and then that cl also satisfies the closure rule.

i

A generalised theory of desirability

Definition: Consider a convex cone &* C ¥~ as described before, and its induced partial order f <* g iff
(g —f) € &L*. We say that a closure operator cl over (g2(Z), C ) is compatible with &Z* if and only if

- respect assessable tautologies: cl(g) = £*

- satisfies <*-dominance : if f € cl(A), and f <* g, then g € cl(A), foreveryA C &
Thus, we say that a belief structure (g(&), C ,cl, C) in which is cl satisfies the two conditions above is a
generalised theory of quasi-desirability if, in addition, C is definable by O.

We finally say that a generalised theory of quasi-desirability is a generalised theory of desirability if it is a
strong belief structure in which the operator cl satisfies PS and ADD (i.e. posi(cl(A)) = cl(A), for every

ACY)
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To better appreciate this remark, let's have a look at the probabilistic
semantics for the standard theories of desirability, and the corresponding
completeness theorems.

i

A generalised theor

Definition: Consider a convex cone &* C ¥~ as described before, and its induced partial order f <* g iff
(g —f) € &*. We say that a closure operator cl over (g(Z), C ) is compatiklle with & if and only if

- respect assessable tautologies: cl(g) = £*
- satisfies <*-dominance : if f € cl(A), and f <* g, then g € cl(A), foreve yA C &
Thus, we say that a belief structure (g(&), C ,cl, C) in which is cl satisfies the two conditions above is a

generalised theory of quasi-desirability if, in addition, C is definable by O.

We finally say that a generalised theory of quasi-desirability is a generalised theory of desirability if it is a
strong belief structure in which the operator cl satisfies PS and ADD (i.e. posi(cl(A)) = cl(A), for every
ACZ)

Here one would like to be able to use a representation theorem for the maximal
consistent theories so to link the structure to some other known context.
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Probabilistic completeness(es)
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Semantics for desirability

Here the crux of the matter is to obtain the completeness result we are looking for by generating
a probabilistic semantics via a representation theorem of hemispaces through duality (polarity)

for the concerned vector space.

Such a move would also hold for the calculus of the TADG applied to
quantum theory, more later.
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Probabilistic semantics

A state is a linear functional L over the space of gambles £ (€2) preserving the unit, i.e. L(1) =1

It corresponds to expectation with respect to a charge u

L(g)=E(8) :==(u-8)
e Whenever L is positive, u is a probability charge (in our cases a probability mass function and we

identify it with a positive n-dimensional vectors of norm one)

- We will from now on identify states with the corresponding charges and thus sometimes call
also a state the latter
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Probabilistic semantics

* We say that a state pu is a model of a gamble g € Z(Q) if E,(g) = 0 and write y F g;

It is @ model of a set of gambles I" C Z(Q) if it is a model of each of its members, and write
ukET.

IDSTA @ surs
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The beauty of being polar

A POLARITY THEORY FOR SETS OF DESIRABLE GAMBLES

A polarity theory for sets of desirable gambles

Alessio Benavoli ALESSIO @IDSIA.CH

Alessandro Facchini ALESSANDRO.FACCHINI@IDSIA.CH
Marco Zaffalon ZAFFALON @IDSIA.CH
Istituto Dalle Molle di Studi Sull’Intelligenza Artificiale (IDSIA), Lugano (Swizterland)

José Vicente-Pérez JOSE.VICENTE @ UA.ES

Departamento de Fundamentos del Andlisis Econémico, Universidad de Alicante (Spain)

Abstract

Coherent sets of almost desirable gambles and credal sets are known to be equivalent models.
That is, there exists a bijection between the two collections of sets preserving the usual operations,
e.g. conditioning. Such a correspondence is based on the polarity theory for closed convex cones.
Learning from this simple observation, in this paper we introduce a new (lexicographic) polarity
theory for general convex cones and then we apply it in order to establish an analogous correspon-
dence between coherent sets of desirable gambles and convex sets of lexicographic probabilities.

Keywords: Desirability; Credal sets; Lexicographic probabilities; Separation theorem; Polarity.
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Polarity for TADG
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Polarity for TADG

So notice that K C K" implies K* 2 (K')*
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Polarity for TADG
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Polarity for TADG
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Polarity for TADG
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Polarity for TADG

We can identify the polar cone with the closed convex set of its section intersecting the
collection of vectors corresponding to pmf, that is a credal set
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Polarity for TADG

IDSTA @ surs

Let P(Z) be the collection of pmf in &, and R(Z) C g(P(Z)) be the collection of all credal sets over Z.
Consider the function € : C (&) = R(&Z) which maps a coherent set of almost desirable gambles
K € C, (&) into credal sets, that is

C(HK) =X nNnP(Z)
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Polarity for TADG

Let P(Z) be the collection of pmf in &, and R(Z) C g(P(Z)) be the collection of all credal sets over Z.
Consider the function € : C (&) = R(&Z) which maps a coherent set of almost desirable gambles
K € C, (&) into credal sets, that is

C(HK) =X nNnP(Z)

e Fact: Themap € : C (&) = R(Z) is a bijection, whose inverse is simply €~ 1(C) = C*, with C a credal set

Whenever # € M (&), we have that (X)) is a singleton, meaning that the
following holds for every # C &
K eM(D)iff Au:K={ge ZL|E[g)>0)
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Polarity for TADG

When considering structures given by sets of gambles and a projection operation of conditioning, and
similar with sets of pmf, it actually turns out that € : C (&) = R(Z) is a isomorphism:

Theorem 6 Let K € A, and 11 C ). The following statements hold:
(7) (K|m) € A ifand only if (C(K) 1) € Cp.
(1) If (K]u) € Am, then C(K|) = (C(K)Jn).




= IDSIA @ surs

Completeness for TADG

Theorem: For every sequentI' > g, I' -y @ iff for every p € P(&), u E ' implies u F ¢

Proof: Consider a sequent I' > g. Then we have that

o ¢
iff

Cny(@) € Cny(1)
iff
C,(Cn(g)) 2 C,(Cn(I")
iff
foreveryy € P(&), u ET' impliesu F ¢
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Polarity for TDG

® Remark: obviously polarity for TADG does not work. A
But even “relaxing” some conditions by taking e.g.
as truth condition E(g) >0 does not lead use to a b
complete probabilistic semantics. .
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Lexicographic duality
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Lexicographic duality

IDSTA

:gl
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Lexicographic duality

g:(f+9)>0}
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Lexicographic duality

g:(f+9)>0}
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Lexicographic duality

g:(f+9)>0}

1

{g:(h - g) >0}
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L' ={g: either(f* g) >0, 0r
if (f*g)=0othen(h * g)>o0}

Lexicographic duality

g:(* 9)>o0}

Y1

{g:(h* g)>0}
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Lexicographic duality

g:(* 9)>o0}

' ={g:[fhI"(g) >L(0,0)}

Y1

{g:(h* g)>0}
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Lexicographic duality

IDSTA
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Lexicographic duality

IDSTA
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Yg:(p g >0} 92

:gl

Lexicographic duality
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Lexicographic duality

IDSTA

1€ (p;(1,0))

:gl
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Lexicographic duality

IDSTA

»
»

[p,h]™= GS([p,q1")

Le.[p,h]Tisthe orthogonal matrix obtained from the
full-rank stochastic matrix [p,q1T by applying the
Gram-Schmidt orthogonalisation procedure according

to the row order.

q € (p;(1,0))
1

259




IDSTA @ surs

i

Lexicographic duality

:gl

g:(q - g)>0}
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Yg:(p g >0} 92 r

=1{g: g) > (0,0)}
\
4
4
<
<
\
Y p stochastic matrix of
e q full rank
Z L
= > 1
©
S
3
O
c
Q.
©
| -
(@)
3 9:(q - 9>0)
X
()
1
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Probabilistic semantics (Il)

Theorem: The structure of coherent sets of desirable gambles over Q and the structure of
“(lexicographic)-convex” sets of n-square stochastic matrices of full rank are isomorphic via
lexicographic duality (polarity):

e MY :={geZ|P > 0,VPe M}, forMC S(Z)
e K*:={PeS(&¥)|Pg > 0VgeK}
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Probabilistic semantics (Il)

Theorem: The structure of coherent sets of desirable gambles over Q and the structure of
“(lexicographic)-convex” sets of n-square stochastic matrices of full rank are isomorphic via
lexicographic duality (polarity):

e MY :={geZ|P > 0,VPe M}, forMC S(Z)
e K*:={PeS(&¥)|Pg > 0VgeK}

Let P’ € M, be the matrix obtained by projecting on II the conditioning p(|II), or taking Oy,
when it is undefined, for each row p of P € T, ,,. Define P |1 as the matrix obtained from P’ by
applying rule (R). By an immediate application of properties of minors and cofactors, we get that
P|p € T,, ;m- Moreover (P|)|a = (P|a), for A C II. Hence, the following operation is always
defined.

Definition 19 Let P C Ty, p, withn > 1. Its conditioning on I1 is the set (P|y) := {(P|n) | P €
P} C Tm,m-

From Definition 5, it is immediate to verify that (K|1) € D,,, whenever K € Dy, and that D,, is
closed under conditioning. Moreover, (K1) € Max(D,,,) whenever K € Max(D,,). To conclude,
we verify that polarity preserves conditioning.

Theorem 20 Let K € Dy, then (G(K) ) = G(K|n) € G

263




IDSTA

i

Probabilistic semantics (Il)

A lexicographic probability over Q is a sequence (py, ..., p,) of probabilities over Q.
Hence it can be seen as a stochastic matrix P := [p;, ..., p,I .
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Probabilistic semantics (Il)

A lexicographic probability over Q is a sequence (py, ..., p,) of probabilities over Q.
Hence it can be seen as a stochastic matrix P := [p;, ..., p,I .

A n-square stochastic matrix P of full rank is a of a a gamble g if

I

and write P F g.
It is a model of a set I if it is a model of each of its members, and write Pi+ I".

We denote by S the collection of stochastic matrices of full rank (the fixed dimension and the space

are implicit)
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Completeness for TDG via lexicographic duality

Theorem: For every sequent ' > g, I' =g @ iff forevery P € S(&), P ET implies P F ¢

Proof: Consider a sequent I' > g. Then we have that

I'Fo @
iff

Cn(e) € Cn(I')
iff
(Cn(p))* 2 (Cn(I))*
iff
forevery P € S(Z), P F I"implies P F ¢
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Part Il: Extending the logic of desirability
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Let (A, =) be some consequence system, and consider a unary function = : AX A - A

A minimal structural property for negation as unary operator, is that if two “things” are inter-derivable
(modulo a given set of assessments), hence their “negation” too is inter-derivable, that is

- foreverya,b€ A, andeveryI' C A
» fIbakbandI,bt a,thenl',7a b =b (—-functionality)

- aunary function = : A X A — A that satisfies functionality is called a subminimal negation
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Let (A, =) be some consequence system, and consider a unary function = : AX A - A

A minimal structural property for negation as unary operator, is that if two “things” are inter-derivable

(modulo a given set of assessments), hence their “negation” too is inter-derivable, that is

- foreverya,b € A, andevery' C A
» fIbakbandI,bt a,thenl',7a b =b (—-functionality)

- aunary function =: A X A — A that satisfies functionality is called a subminimal negation

First made explicit in the works by Kosta Dosen (1999) and especially, in a systematic
way, by Almudena Colacito, Dick De Jongh, & Ana Lucia Vargas (2016).

From now on, when not derivable, we always assume this property

Soft Comput (2017) 21:165-174
DOI 10.1007/s00500-016-2391-8

FOCUS

Subminimal negation

Almudena Colacito! - Dick de Jongh! - Ana Lucia Vargas!




Minimal and intuitionistic negation

Let (A, I ) be some consequence system, and consider a subminimal negation =: AX A - A

We may then have rules for introducing and eliminating a “negation”
- foreverya,b € A,andevery' C A
» flLbakFbandI,a b —b,then' F ma (—-introduction)
» fI'FaandT' F —ag,thenT' b (—-elimination / ex-contradictio sequitur quod libet)
- asubminimal negation = : A X A — A that satisfies =-introduction is called a minimal negation

- aminimal negation = : A X A — A that satisfies =-elimination is called a intuitionistic negation

IDSTA @ surs
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Minimal and intuitionistic ne

Functionality follows from the introduction rule. In fact assume I',a F b and
I',b  a. Now, by diluation I', a, =b F b and by reflexivity I', a, 7b + =b,
hence by introduction I', =b F —a.

Let (A, I ) be some consequence system, and consider a sut minimal negation =: AX A - A

We may then have rules for introducing and eliminating a “negation”
- foreverya,b € A,andevery' C A
» flLbakFbandI,a b —b,then' F ma (—-introduction)
» fI'FaandT' F —ag,thenT' b (—-elimination / ex-contradictio sequitur quod libet)
- asubminimal negation = : A X A — A that satisfies =-introduction is called a minimal negation

- aminimal negation = : A X A — A that satisfies =-elimination is called a intuitionistic negation
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Minimal and intuitionistic negation

Let (A, I ) be some consequence system, and consider a subminimal negation =: AX A - A

We may then have rules for introducing and eliminating a “negation”
- foreverya,b € A,andevery' C A
» flLbakFbandI,a b —b,then' F ma (—-introduction)
» fI'FaandT' F —ag,thenT' b (—-elimination / ex-contradictio sequitur quod libet)
- asubminimal negation = : A X A — A that satisfies =-introduction is called a minimal negation
- aminimal negation = : A X A — A that satisfies =-elimination is called a intuitionistic negation

Proposition: A minimal negation is an antitonic operation, meaning that it satisfies the following contraposition law: for every
a,b e A, andeveryl' CA,ifl',at b, thenT’,=b F —a.

Proof. Assume I', a - b. By dilution I', @, =b F b. By reflexivity I', a, 7b = =b. Thus by —-introduction we conclude I', b  —a.

Zl9o




IDSTA @ surs

Minimal and intuitionistic ne

Contraposition does not imply —-introduction, hence one could actually
consider the system given by functionality + contraposition, without the rule
of introduction.

Let (A, I ) be some consequence system, and consider a subminimal negation =: A X\ - A

We may then have rules for introducing and eliminating a “negation”
- foreverya,b € A,andevery' C A
» flLbakFbandI,a b —b,then' F ma (—-introduction)
» fI'FaandT' F —ag,thenT' b (—-elimination / ex-contradictio sequitur quod libet)
- asubminimal negation = : A X A — A that satisfies =-introduction is called a minimal negation
- aminimal negation = : A X A — A that satisfies =-elimination is called a intuitionistic negation

Proposition: A minimal negation is an antitonic operation, meaning that it satisfies the following contraposition law: for every
a,b e A, andeveryl' CA,ifl',at b, thenT’,=b F —a.

Proof. Assume I', a - b. By dilution I', @, =b F b. By reflexivity I', a, 7b = =b. Thus by —-introduction we conclude I', b  —a.

L4
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Proposition: A minimal negation satisfies the law of introduction of the

double negation: foreverya € A, and everyI' C A, I',a - =—a
Minimal and intuitionistic ne Proof: By reflexivity I',a, ma - a and I', a, 7a F —a. Thus by —-introduction

we concludeI',a + = —a.

Let (A, I ) be some consequence system, and consider a subminimal negation =: A> A - A

We may then have rules for introducing and eliminating a “negation”
- foreverya,b € A,andevery' C A
» flLbakFbandI,a b —b,then' F ma (—-introduction)
» fI'FaandT' F —ag,thenT' b (—-elimination / ex-contradictio sequitur quod libet)
- asubminimal negation = : A X A — A that satisfies =-introduction is called a minimal negation

- aminimal negation = : A X A — A that satisfies =-elimination is called a intuitionistic negation
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Negation and the falsum

Definable belief structure naturally arises when the underlying language has an operator acting as a
subminimal negation, and the following introduction rule holds, for every b € A, and every I' C A:

- fI'kbandl'F b, thenT' - L (L-introduction)
When in the presence of a minimal negation, one also typically ask for a weak rule of elimination, which is

specular to —-introduction:

- Kb L thenT'==b (minimal L-elimination)
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Negation and the falsum

Definable belief structure naturally arises when the underlying language has an operator acting as a
subminimal negation, and the following introduction rule holds, for every b € A, and every I" C A:

- fI'kbandl'F b, thenT' - L (L-introduction)
When in the presence of a minimal negation, one also typically ask for a weak rule of elimination, which is

specular to —-introduction:
- Kb L thenT'==b (minimal L-elimination)

The idea of a minimal (or pre-)falsum is to have a specific symbol representing the fact of being able to

derive a some thing and its negation (opposite).

e Fact: Given a consequence system (A, |- ) containing a minimal negation, and satisfying (L-introduction)
and (minimal L-elimination), one can check that, for every I' C A, whenever I' # { L }, it holds that

1 e Cn(I)iff {b,~b} C Cn(I'), for some b € A.




= IDSIA

Classical negation

- foreverya,b€ A, andeveryI' CA
» HI,makla,thenT Fa (Curry’s law)

- aintuitionistic negation = : A X A — A that satisfies Curry's law is called a classical negation.

e Theorem: A classical negation satisfies the following properties:
- WI,makFbandIl',mat —b, thenT' Fa (Reduction ad absurdum)

- I',m—alba (Double negation elimination)

To get classical negation, we need some additional property. First we state the following principle:
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Classical negation

To get classical negation, we need some additional property. First we state the following principle:
- foreverya,b€ A, andeveryI' CA
» IfI,maka,thenl' Fa (Curry’s law)

- aintuitionistic negation = : A X A — A that satisfies Curry’s law is called a classical negation.

e Theorem: A classical negation satisfies the following properties:
- WI,makFbandIl',mat —b, thenT' Fa (Reduction ad absurdum)

- I,m—alka (Double negation elimination)

Proposition: Every classical negation satisfies RAA and the law of double negation.

Proof. For the first claim, by applying —=-elimination to I',—a = b, and I',—a - =b, we get I', 7a - a. We conclude by Curry’s

law. Finally, by applying RAA to facts = —a,—a - —a and ——a,—a - ——a, we get the double negation elimination law.




= IDSIA @ sues

Classical negation

To get classical negation, we need some additional property. First we state the following principle:
- foreverya,b€ A, andeveryI' CA
» IfI,maka,thenl' Fa (Curry’s law)

- aintuitionistic negation = : A X A — A that satisfies Curry’s law is called a classical negation.

e Theorem: A classical negation satisfies the following properties:
- WI,makFbandIl',mat —b, thenT' Fa (Reduction ad absurdum)

- I',m—alka (Double negation elimination)

Proposition: Every subminimal negation that satisfies RAA is classical.

Proof. =-introduction is immediate by dilution, and Curry’s law by using reflexivity. For —-elimination we reason as follows. From

the previous proposition, RAA implies double negation elimination. Thus, from the latter and cut, assuming I',a - b and
Ibatk-b,wegetl’,m—nat bandI’,~—a F b, and by RAA, we conclude that I" - —a.
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Three main pure calculi of negation (w/ falsum)

Classical negation

Introduction, elimination and Curry’s law

Intuitionistic negation

Introduction and elimination

Minimal negation

Introduction (and weak elimination)
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e

Slailgle gambles { set of gambles accepted by Alice }

A




IDSTA @ surs

i

A

ecting gambles

e set of gambles that Alice does not accept ]




IDSTA @ surs

e

A

Slailgle gambles set of gambles that Alice does not accept ]

Is not accepting the same act as
rejecting?

If not, what does it means for Alice to
reject a gamble?
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Rejecting gambles

—

Quaeghebeur, De Cooman & Hermans 2015),
a general framework for modelling uncertainty,
going beyond TDG, is presented based around
the idea that gambles are categorised into
accepted and rejected ones.

In

E.g. avoiding sure loss: Alice rejects all negative
gambles

International Journal of

Approximate Reasoning
Volume 57, February 2015, Pages 69-102

Accept & reject statement-based
uncertainty models

Erik Quaeghebeur ©°1 & &, Gert de Cooman “&, Filip Hermans ©
Show more v
+ Add to Mendeley o Share 99 Cite

https://doi.org/10.1016/j.ijar.2014.12.003 2 Get rights and content 2

Under an Elsevier user license 7 open archive

Highlights

»  We develop a framework for modelling and reasoning
based on a pair of gamble sets.
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Rejecting gambles

New principles (e.g. no confusion, no limbo), idea of extension for sets of accepted and rejected
gambles.

However, rejecting (a gamble) is not really treated as a “logical operation”, as with accepting (a
gamble) in TDG
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Rejecting gambles

New principles (e.g. no confusion, no limbo), idea of extension for sets of accepted and rejected
gambles.

However, rejecting (a gamble) is not really treated as a “logical operation”, as with accepting (a
gamble) in TDG

If | accept X and Y, then | “rationally” have to accept X+Y.
But what if | accept X and reject Y?
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Rejecting gambles

New principles (e.g. no confusion, no limbo), idea of extension for sets of accepted and rejected
gambles.

However, rejecting (a gamble) is not really treated as a “logical operation”, as with accepting (a
gamble) in TDG

If | accept X and Y, then | “rationally” have to accept X+Y.
But what if | accept X and reject Y?

Hence, what does it mean to reject a gamble, from a logical
point of view?
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The logic of accept & reject

We follow (Bendall 1979); Humberstone 2000),
and define a signed formulas as an expression of

the form [ + ]g or [ — g, with g a gamble.
* the expression [ + ]g reads “g is accepted”,

* the expression [ — ]g reads “g is rejected”.

68

Notre Dame Journal of Formal Logic
Volume XX, Number 1, January 1979
NDJFAM

NEGATION AS A SIGN OF NEGATIVE JUDGMENT

KENT BENDALL

1 Introduction We need to form negative as well as affirmative state-
ments because we need to mark falsity as well as truth, to register
rejection as false as well as acceptance as true, and to deny as well as to
assert. But we do not need an embeddable negation operator any more than
we need an embeddable affirmation operator, provided operators are
available for forming conjunctions, disjunctions, conditionals, and universal
and existential generalizations. This thesis, which is examined and

LLOYD HUMBERSTONE

THE REVIVAL OF REJECTIVE NEGATION

First received on 13 August 1999; Final version received on 4 February 2000

ABSTRACT. Whether assent (“acceptance”) and dissent (“rejection”) are thought of as
speech acts or as propositional attitudes, the leading idea of rejectivism is that a grasp of the
distinction between them is prior to our understanding of negation as a sentence operator,
this operator then being explicable as applying to A to yield something assent to which
is tantamount to dissent from A. Widely thought to have been refuted by an argument of
Frege’s, rejectivism has undergone something of a revival in recent years, especially in
writings by Huw Price and Timothy Smiley. While agreeing that Frege’s argument does
not refute the position, we shall air some philosophical qualms about it in Section 5, after
a thorough examination of the formal issues in Sections 1-4. This discussion draws on —
and seeks to draw attention to — some pertinent work of Kent Bendall in the 1970s.

KEY WORDS: negation, rejection, assertion, denial, rules, consequence relations, signed
formulas, connectives.

290



68

Notre Dame Journal of Formal Logic
Volume XX, Number 1, January 1979
NDJFAM

The logic of accept & reject

NEGATION AS A SIGN OF NEGATIVE JUDGMENT

KENT BENDALL
We follow (Bendall 1979); Humberstone 2000),
aﬂd deflﬂe a Slgned formU|aS as an expreSS|On Of 1 Introduction We need to form negative as well as affirmative state-

ments because we need to mark falsity as well as truth, to register

. rejection as false as well as acceptance as true, and to deny as well as to

th e fo rm [ + ]g O r [ -_— ]g’ Wlth g a g a m b | e . assert. But we do not need an embeddable negation operator any more than
we need an embeddable affirmation operator, provided operators are

available for forming conjunctions, disjunctions, conditionals, and universal

° the expression [ + ]g reads llg iS accepted III and existential generalizations. This thesis, which is examined and

* the expression [ — ]g reads “g is rejected”.

LLOYD HUMBERSTONE

THE REVIVAL OF REJECTIVE NEGATION

|dea: define a calculus where “formulas” are unidimensional from which to derive
the characterisation results from (Quaeghebeur, De Cooman & Hermans 2015)

writings by Huw Price and Timothy Smiley. While agreeing that Frege’s argument does
not refute the position, we shall air some philosophical qualms about it in Section 5, after
a thorough examination of the formal issues in Sections 1-4. This discussion draws on —
and seeks to draw attention to — some pertinent work of Kent Bendall in the 1970s.

KEY WORDS: negation, rejection, assertion, denial, rules, consequence relations, signed
formulas, connectives.
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- g>0  (APG)
I'bg
" I'bg A>0  (PS)
-é—)» ' Ag
(]
o3 Ivg  Ibf (ADD)
@)
O
- I'> g+f
o
O
g) I'bl (L-elimination)
2 I'byg
I_
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g>0  (APG)
I'sd [+]g

- I'sb 1+1g A>o  (PS)

()]

) ['sd [+14g

o

3 Tp[+lg T [+]f  (ADD)

E [sd [+1(g+f)

@)

'ét)) I'sP[+]L (L-elimination)

2 I'sP [+]g

I_
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[*]g € I' (R)
Isb [*1g
O g T, (D)
s> [*]g
[olxlg  Tylxlg b [#1f (cut)
b [+1f

where #/<% =+ -

The logic of accept & reject
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The logic of accept & reject

The first is just functionality for negation but for rejection, and thus captures a minimal structural property for
the corresponding unary operator

[s[+1g > [+lf Ts[+lf > [+lg
Fs; ["]g D ["]f

(N)

“given [, if the acceptance of g implies the acceptance of f, and vice
versa, then rejecting g forces me to reject ftoo”
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The logic of accept & reject

The next rules are the standard introduction and elimination rules (cf. with the negation operation)

. rs,[+]g > [+] L “given I, if accepting g leads to
(no limbo) (I=1 an incoherence, i.e. | am forced to
s > [-lg accept the falsum, then | reject g”
(no confusion) | [+]g | [-1g [ —]-E)
[ D[+]L
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The logic of accept & reject

From no limbo, we get the following “standard” contraposition rule for rejection

[s[+]g b [+1f
(contraposition) (CON)

Ls, [FE > [-1g

The reasoning is the same as for the case with standard negation. Use dilution, reflexivity and then
apply no limbo.
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The logic of accept & reject

The next pair of rules explicitly connects rejection with multiplication by -1 (“classical implicit internal
negation”), and mimic somehow in this sense forms of contraposition rules.

[s,[+]g > [+]-f
(“from -1 to [-]") (W.Conn. 1)
FS) [+]f [> [‘]g

[s,[+]g b [1f
(“from [-] to -1") (W.Conn. 2)

rS) [+]f D [+] —g
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The logic of accept & reject

The next rule are the standard defining properties of classical negation expressed in terms of
multiplication by -1 and rejection:

We could also have a variant of RAA
without making explicit -1, but we should
((RVAVAY! then have in the background some

[g[+]-g > [+]L

I's > [+]g principle connecting -1 and rejection.
Similar, variants of Curry’s law, with
explicit mention of -1 or not.

I_‘s D [’]'g
DN
[, [+g ON
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The logic of accept & reject

IDSTA
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With the accept & reject framework we are here, hence

i

essentially we are dealing with an intuitionistic framework

W.Conn.2= RAA=DN |

5 [ \ -1 E S

9 1

o -
: N

rel W.Conn. 1 =[] | RN

)

; I
e il
kS

O N N

@)

O

()

C

I_
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Characterisation of closure classes

Given a set of signed assessment I', we define Iy :={ge L |[¢o]g eI}, for o =+, —.

e Theorem: Let I'| be a set of signed assessment, and assume
- itis D-consistent (i.e. Cna(I)) € Cq) and

- Cng(T'H NI =@.
Then it holds that

- I', is §-consistent,

- the set of its positive consequences is (Cng(I',))" = Cng(I')) and
- the set of its rejected consequences is (Cng(IT',))™ = (Cng(I',))” U (Cny(I',))” — Cna(I'))).

302



(1

@)

€

This result can be seen as the logical analogous (with TDG in the background) of the following
characterisation result in (Quaeghebeur, De Cooman & Hermans 2015):

Proposition 2.77. Given a deductively closed assessment without confusion D in I, then its reckoning extension is a

model without confusion: exty;D = (Ds;D<U(D<-D)) € M.

Theorem: Let I'; be a set of signed assessment, and assume
- itis D-consistent (i.e. Cna(I)) € Cq) and
- Cng(rj) N Fs_ = Q.

Then it holds that
- I', is §-consistent,

- the set of its positive consequences is (Cng(I',))* = Cng(I'Y) and
- the set of its rejected consequences is (Cng(IT',))™ = (Cng(I',))” U (Cny(I',))” — Cna(I'))).
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Kripke semantics for accept & reject systems

We consider Kripke-like semantics, where each possible word corresponds to a set of lexicographic
probabilities, represented as stochastic matrices (of full rank) - and thus, via lexicographic duality, as
coherent cones of gambles.
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Kripke semantics for accept & reject systems

Given a poset (W, <), by (W) we denote the set of all upward closed subset of W with respect to
<:if(weUandw<v)thenve U

A Kripke frame is a triple F := (W, <, N) where
— (W, <) is a partial order,
— N:UW) > UW)

With this function we will provide a
semantics for rejection

A Kripke model is a pair M := (F, V) where
— Fis a Kripke frame,
- V: W - @(S(2)) is a persistent valuation, i.e. such that if V(w) 2 V(v), whenever w < v
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Kripke semantics for accept & reject systems

Let M = (¥, V) be a Kripke model and w e W
- Mwi-[+]giff PI-g, v PeVw)
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Kripke semantics for accept & reject systems

Let IM := (F, V) be a Kripke model, and consider w € W.
We set that

- M,wE[+]gifandonlyif|lP F g,VP € V(w) if and only if P(g) >; 0,VP € V(w)

g € (Vw)?
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Kripke semantics for accept & reject systems

Let IM := (F, V) be a Kripke model, and consider w € W.
We set that

- | M,wE[+]gifandonlyif PF g,VP € V(w) if and only if P(g) >; 0,VP € V(w)

* Notice that that, by persistency of V:
Il+1gll :={weW[MwE[+]g} € UW)

e Hence we set

- MwE[-lgiffwe N[+ 1glD
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N(U) = N([[+lg])
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N(U) = N([[+lg])
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pke semantics for accept & reject systems: semantic consequence

Definition: Given a class X of Kripke model and a signed sequent I', > [ o ]g we write
1—‘s I_% > g
if and only if for every M € X and everyw € W, w € ||I'||gp implies w € ||[og]|lsn
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Conditions on function N

(

P
P
P

-—

) NUnV=NUnV)nV
) TUnV =g, then U c N(V)
) N(U) is the greatest element in U(W) which is included in the complement of U

N

w

Notice that that
e (P3) implies (P1) and (P2)
e (P1) and (P2) are logically independent
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= IDSIA
Conditions on function N and corresponding systems
Class of models Calculus Rules
P1 N N
P1 + P2 R N + [-]I
P3 3 (N+) [-]I +[-]E
singleton ¢ (N+) [[]I+[-]JE+ DN
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Conditions on function N and corresponding systems
(“intuitionistic” rejection) M,w I+ [-1g iff Vvew: v & [[+]g])

-
Class of models Calculus Rules
P1 N I\
P1+ P2 %1 N+ [-]1
=
< P3 ; 3 (N+) [-]I +[-]E
singleton ¢ (N +) [[]I + [-]E + DN
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Thus, a reading:

e for Alice to reject g it means that she is not
going to accept g in any epistemically
plausible situation (w.r.t. the actual one).
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Classical rejection

(classical semantics)

P=[+lg iff PI-g iff g€ PY

@ sups

P=[-lg iff P [+]g iff P ¥ g iff g & PY
[ E[#]g iff VPES: (PET, = PE[+]g)

Class of models Calculus Rules
P1 N I\
P1+ P2 R N + [-]I
P3 // S (N +) []1 + [-]E
@ ¢ (N+) [-]I + [-]E + DN
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Conclusion

e The theory of desirable gambles (TDG) is a logic

* We can study the act of accepting and rejecting gambles from a logical
point of view

- It is thus natural to go further...
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- extend the proposed logical approach to Gert & Erik
What next framework for "reject & accept” by adding specific
Gentzen-type rules for conjunction and disjunction;

e What about - study the properties of the system(s)

- verify if and how it is possible to link them with (the
- |s there ar desirability view on) choice functions (or not?) at can be added

to the frar _ ) )
e What about adding other connectives?
- Can we capture within these extension the theory of choice functions?

- And what about the theory of things? Should we also change the type of
consequence relation?
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Conjunction and disjunction

Let (A, I ) be some consequence system, we say that
- abinary function A: AX A — A is a conjunction if for everya,b € Aand everyI' C A
» TLaAbrFaandl,anbk b (A-elimination)
» TLa,bFaAb (A-introduction)
- abinary function V: A X A — A is a disjunction if for every a,b,c € A, and every ' C A
» flLalkc andI',bk c,then,aVvbF ¢ (v-elimination)
» TakavbandI',blFavVvb (V-introduction)
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Conjunction and disjunction

These conditions can straightforwardly been turned into Gentzen-style rules

Let (A, I ) be some consequence system, we say that
- abinary function A: A XA — Ais a conjunction if foreverya,b € Aandevery' C A
» TLaAbrFaandl,anbk b (A-elimination)
» TLa,bFaAb (A-introduction)
- abinary function vV : A X A — A is a disjunction if for every a,b,c € A, and everyI' C A
» flLalkc andI',bk c,then,aVvbF ¢ (v-elimination)
» TakavbandI',blFavVvb (V-introduction)
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What about when a consequence system has both conjunction and
. . ~disjunction? What kind of properties should we expect? Remember that in
COHJUﬂCtIOﬂ and d|SJ‘ case we are consider a unary implication, and in particular lattices,
distributivity does not necessarily hold (see e.g “"quantum logic”)

Let (A, I ) be some consequence system, we say that
- abinary function A: A XA — Ais a conjunction if foreverya,b € Aandevery' C A
» TLaAbrFaandl,anbk b (A-elimination)
» TLa,bFaAb (A-introduction)
- abinary function vV : A X A — A is a disjunction if for every a,b,c € A, and everyI' C A
» flLalkc andI',bk c,then,aVvbF ¢ (v-elimination)
» TakavbandI',blFavVvb (V-introduction)
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Conjunction and disjunction

The fact of dealing with a “set-thing”-relation has some “unintuitive” consequences, such as:

Theorem: Let (A, =) be some consequence system that has conjunction and disjunction. Then it satisfies
the distribution laws, that is for every a,b,c € A, and everyI' C A

- Ianbve)dET,(anb)V(aAc)
- IavibAace)dET,(avb)A(aVc)

* Proof: We just verify the first case. We have thata A(bVc)FaandaA(bV ) bV c. This implies that
anbVvcec),bk(aAnb)andthusaA(bVc),btE (aAb)V (aAc). Similarly an(bVve),c(@Ab)V(anc).
By cut and V-elimination, we getthata A (bV ¢) - (a A b) V (a A c). For the other direction, it is immediate
to first check that by V-introduction (a Ab) Fa AV c)and(aAc)b aA(bVc), and then, as before,

conclude by V-elimination.
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Conjunction and disjunction

The fact of dealing with a “set-thing”-relation has some “unintuitive” consequences, such as:

e Theorem: Let (A, I ) be som= consequence system that has conjunction and disjunction. Then it satisfies
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For more on this “paradoxical” issue, see:

A Paradox in the Combination of Logics

Jean-Yves Béziau*

In this paper we present a fact, surprising enough to be called a paradox,
which shows that the central issue in combination of logic is still problematic.
This issue has been described by Dov Gabbay in his book on fibration as follows
“Combine S1 and S2 into a > " s the smallest logical system for
the combined language which is a conservative extension of both S1 and S2.
The two systems are presented in totally different ways. How are we going to
combine them.” ([2], p.7)

Given two logics Ll and L2, let us call L1x L2 the combination of L1 and L2
described al . the smallest logic for the combined language which
is a conservative extension of both L1 and L2. If we have a m 1 for
combining semantics or proof systems, how can we be sure that this mechanism
pl()dll(,eb L1 % LQ’ If we hdve a techmque to (,0111bme a I\upl\e 5en1d11t1('\ K1

Combining Conjunction with Disjunction

Jean-Yves Béziau' and Marcelo E. Coniglio?

! Institute of Logic, University of Neuchatel, Espace Louis-Agassiz 1, 2000
Neuchétel, Switzerland
jean-yves.beziau@unine.ch,
‘ WWW home page: http://www.unine.ch/unilog/ th at
2 Centre for Logic, Epistemology and the History of Science and Department of
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WWW home page: http://www.cle.unicamp.br/prof/coniglio/
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Abstract. In this paper we address some central problems of combina-
tion of logics through the study of a very simple but highly informative
case, the combination of the logics of disjunction and conjunction. At
first it seems that it would be very easy to combine such logics, but the
following problem arises: if we combine these logics in a straightforward
way, distributivity holds. On the other hand, distributivity does not arise
if we use the usual notion of extension between consequence relations.
A detailed discussion about this phenomenon, as well as some possible
solutions for it, are given. 340
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Three main logics

Classical logic

conjunction, disjunction and classical negation

Intuitionistic logic

conjunction, disjunction and intuitionistic negation

Minimal logic

conjunction, disjunction and minimal negation
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Some additional basics of lattice theory




i
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Filters ...

Definition: Let (A, A, V) be a lattice. A subset F C A is a filter, if, for every a,b € A, the following hold
(F1)a€ Fand b € FimpliesaAb € F
(F2)a€ Forb e FimpliesavbeF

The second condition is sometimes expressed in the following equivalent form
(F2Ya € Fanda < bimpliesb € F
A filter F C A is said to be
- proper whenever F' # A,
- prime, whenever it is proper and: a V b € F implies eithera € Forb € F, forevery a,b € A,
- maximal (or a ultrafilter) if it is proper and if ' 2 F'is a filter, then F' = A.

KZX
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Filters ...

Fact: Let (A, A, V) be a lattice. Consider a non empty collection F# C g(A) of filters. Then ﬂ F CAis

also a filter. In particular, this means that, given a set B C A, there is the smallest filter
[B) := ﬂ {F CA|F 2 BandFis afilter.} extending B. Moreover, it holds that

[B)={a€A|3b,....,.b,EBst.byN...ANb, L a}

Whenever a filter F' = [B), we say that B generates F.

e Definition: Let (A, A, V) be a lattice. Whenever a filter F = [B), we say that B generates F. When B is a
singleton, we say that F is a principal filter.
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Ultrafilters

Theorem (ultrafilter extension principle): Let (A, A, V) be a lattice. Any proper filter FF C A is contained in a
ultrafilter F* D F.

Proof: Consider the family & C ¢(A) of proper filters extending F ordered by inclusion. Clearly & contains
F. Consider now any chain & of proper filters extending F. Notice that F U U € is a proper filter extending

F and an upper bound of €. By Zorn’s lemma there is a proper filter maximal among those that extend F,
which is therefore maximal among all proper filters
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Being separated by (prime) filters

Theorem (prime filter separation principle): Let (A, A, V) be a lattice, and let a,b € A such thata £ b. Then
there is a ultrafilter F C A such thata € Fbutb & F.

Proof: Consider the principal filter [a). Clearly b & [a), but it does not need to be prime (i.e. a ultrafilter). As
before, take any chain € of proper filters extending [a) an such that b & F for every F' € €. Notice that

U € is a proper filter extending [a) such that b & U € and is an upper bound of €. By Zorn’s lemma
there is a proper filter F' C A maximal among those that extend [a) and do not contain b. One just then

check that F”is actually prime.
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Distributive lattices

Definition: A lattice (A, A, V) is said to be distributive whenever it satisfies the following identities:
- xVOAD=CVY)AKXV2,
- xA(yVZ=xEAY)VXA2Z).

e Fact: In a distributive lattice, any ultrafilter is necessarily prime, although not every prime filter is maximal.
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Stone’s representation theorem for distributive lattice

Theorem (Stone’s representation theorem): Every distributive lattice is isomorphic to a ring of sets (i.e. a
collection of sets closed under binary intersection and union).

Proof. Obviously every ring of sets is a distributive lattice. So let (A, A, V) be a distributive lattice. Define
the ring of sets (lattice) # == ({{P S A|a € Pisaprimefilter} |a€ A},n,U). The map

h:aw— {PCA|aé& Pisaprime filter} is one-to-one by the prime filter separation principle. One then
check that it actually defines a homomorphism from (A, A, V) onto &£.
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Definition: Let (A, A, V) be a lattice. A subset I C A is a ideal, if, for every a,b € A, the following hold
(IMa€landb € limpliesavbel
(I2a€lorbelimpliessaAnbel

The second condition is sometimes expressed in the following equivalent form
(I2Ya€elanda > bimpliesb €1

Aideal I C A is said to be

proper whenever I # g,

prime, whenever it is proper and: a A b € I implies eithera € I or b € I, for every a,b € A,

maximal (or a ultrafilter) if it is proper and if F’' 2 F'is a filter, then I’ = A.

principal if = {a € A| a < i}, forsomei € A, and we denote it by (i].
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Filters and ideals
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Seeing a partial order as “logical entailment”, a filter can be thought of as a theory, that is a logically closed
set of propositions/claims / assertions;

- as such it behaves exactly like a classical truth set (possible world) with respect to conjunction, and
halfway like a classical truth set with respect to disjunction.

What make a filter behaves exactly like a classical truth set, is the converse of F2, that is the defining
condition of a prime filter

- thus in a prime filter (prime theory, prime world), the conjunction of two propositions is true if and only
if both of the propositions are true, and the disjunction of two propositions is true fi and only if at least
one of the propositions is true.

Similarly, an ideal can be thought of as a counter-theory, i.e., a logically closed collection of disclaimers, and
a prime ideal can be thought of as a"false ideal”.
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