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What is uncertainty?
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There is no consensus definition of uncertainty. . .

Walker et al. (2003)

Uncertainty is any departure
from the unachievable ideal of complete determinism.

Hubbard (2014)

Uncertainty is the lack of certainty, a state of limited knowledge where it is
impossible to exactly describe the existing state, a future outcome,
or more than one possible outcome.
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How can we represent uncertainty?
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Uncertainty representations are defined by axioms

Cox (1946), paraphrased
Any reasonable measure of belief is isomorphic to a probability distribution.

Some concrete examples of representations
▶ probability distributions
▶ intervals, sets
▶ possibility distributions, belief functions
▶ sets of desirable gambles, preference orders
▶ lower/upper probabilities/expectations
▶ credal sets
▶ choice functions
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What is reasoning under uncertainty?
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Reasoning under uncertainty: deducing inferences or making decisions

Klir (1995)

In each problem situation, uncertainty is associated with some purpose.
It may, for example, be associated with prediction, retrodiction, prescription,
or decision making.

Some concrete examples
▶ Predicting individual disease risk based on medical history
▶ Planning and designing of blood bank for a hospital with 100 beds
▶ A newspaper vendor must decide how many copies to purchase each day
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Blood groups problem with expensive test

Problem setup
▶ A sample:

A AB O B
A B A O

▶ A disease

▶ Two treatments with
differing effectiveness:

A B AB O
f1 0.5 0.6 0.7 0.1
f2 0.4 0.3 0.3 0.8

Representation
PMF from observed frequencies:

pA pB pAB pO
3/8 2/8 1/8 2/8

Reasoning
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Blood groups problem with expensive test

Problem setup
▶ A sample:

A AB O B
A B A O

▶ A disease

▶ Two treatments with
differing effectiveness:

A B AB O
f1 0.5 0.6 0.7 0.1
f2 0.4 0.3 0.3 0.8

Representation
PMF from observed frequencies:

pA pB pAB pO
3/8 2/8 1/8 2/8

Reasoning
▶ P({A, O}) = 5/8
▶ Ep(f1) = 0.45 (check!)
▶ Outcome A has maximal probability
▶ Treatment 2 has highest expected

effectiveness (check!)
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Blood groups problem with cheap test

Problem setup
▶ A partial information sample:

A,B AB O A,B
A,B A,B A,B O
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Blood groups problem with cheap test

Problem setup
▶ A partial information sample:

A,B AB O A,B
A,B A,B A,B O

▶ A disease

▶ Two treatments with
differing effectiveness:

A B AB O
f1 0.5 0.6 0.7 0.1
f2 0.4 0.3 0.3 0.8

Representation
PMF from observed frequencies:

pA pB pAB pO
? ? 1/8 2/8

Reasoning
▶ P({A, O}) = ?
▶ Ep(f1) = ?
▶ Outcome ? has maximal probability
▶ Treatment ? has highest expected

effectiveness
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We want to be able
to represent uncertainty and reason

also in situations
with partial information
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Basic setup and axioms

Basic setup of probability theory:
▶ Random variable X
▶ Set of possible outcomes X
▶ Each possible event/set S ⊆ X

is assigned a probability value P(S)

Axioms
A probability mass function p (and the corresponding probability measure P) must be:

1. Nonnegative: px ≥ 0 for all outcomes x ∈ X
2. Additive: P(S) =

∑
x∈S px for all events S ⊆ X

3. Normed: P(X ) = 1
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Probability simplex: visualizing probability mass functions

▶ X = {Win, Draw, Lose}

▶ ‘degenerate’ probability mass
functions (pmfs)
p = (pW, pD, pL) at the corners

▶ other pmfs as convex
combinations thereof; values can
be ‘read off’ as distance to
opposite edge

Win

Draw

Lose
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▶ X = {Win, Draw, Lose}

▶ ‘degenerate’ probability mass
functions (pmfs)
p = (pW, pD, pL) at the corners

▶ other pmfs as convex
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(0, 1, 0)

(0, 0, 1)
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Probability simplex: visualizing probability mass functions

▶ X = {Win, Draw, Lose}

▶ ‘degenerate’ probability mass
functions (pmfs)
p = (pW, pD, pL) at the corners

▶ other pmfs as convex
combinations thereof; values can
be ‘read off’ as distance to
opposite edge

Win

Draw

Lose

(2
5 , 0, 3

5)

pL = 3
5 pW = 2

5
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Probability simplex: visualizing probability mass functions

▶ X = {Win, Draw, Lose}

▶ ‘degenerate’ probability mass
functions (pmfs)
p = (pW, pD, pL) at the corners

▶ other pmfs as convex
combinations thereof; values can
be ‘read off’ as distance to
opposite edge

Win

Draw

Lose

(1
3 , 1

2 , 1
6)

pL

pW

pD
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Probability simplex: visualizing probability mass functions — exercise

On a gridded probability simplex on
your worksheet, indicate
▶ The degenerate pmf

corresponding to pL = 1
▶ The pmf

(pW, pD, pL) = (05, 0.5, 0)
▶ The pmf

(pW, pD, pL) = (0.1, 0.3, 0.6)

Win

Draw

Lose
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Reasoning — deducing inferences and making decisions

Deducing inferences
▶ probability values
▶ expectations/previsions of real-valued functions f on X :

Ep(f ) :=
∑
x∈X

px f (x)

Decision making
▶ outcomes with maximal probability
▶ options minimizing/maximizing expectation

▶ Topic of tomorrow morning’s lecture
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Probability simplex: visualizing probabilities and expectations

▶ X = {Win, Draw, Lose}

▶ Visualize probability and
expectation values as the lines
of pmfs for which that value is
attained

Probability example
▶ A = {Win, Lose}
▶ P(A) = pW + pL = 2/3

Win

Draw

Lose
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Probability simplex: visualizing probabilities and expectations

▶ X = {Win, Draw, Lose}

▶ Visualize probability and
expectation values as the lines
of pmfs for which that value is
attained

Probability example
▶ A = {Win, Lose}
▶ P(A) = 2/3

Win

Draw

Lose
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Probability simplex: visualizing probabilities and expectations

▶ X = {Win, Draw, Lose}

▶ Visualize probability and
expectation values as the lines
of pmfs for which that value is
attained

Probability example
▶ A = {Win, Lose}
▶ P(A) = pW + pL = 2/3

Win

Draw

Lose

(2
3 , 1

3 , 0) (0, 1
3 , 2

3)
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Probability simplex: visualizing probabilities and expectations

▶ X = {Win, Draw, Lose}

▶ Visualize probability and
expectation values as the lines
of pmfs for which that value is
attained

Expectation example
▶ f = (fW, fD, fL) = (1, 0, −1)
▶ E (f ) = −1/2

Win

Draw

Lose
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Probability simplex: visualizing probabilities and expectations

▶ X = {Win, Draw, Lose}

▶ Visualize probability and
expectation values as the lines
of pmfs for which that value is
attained

Expectation example
▶ f = (fW, fD, fL) = (1, 0, −1)
▶ E (f ) = pW − pL = −1/2

Win

Draw

Lose(1
4 , 0, 3

4)

(0, 1
2 , 1

2)
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Probability simplex: visualizing probabilities and expectations — exercise

On a non-gridded probability simplex
on your worksheet, indicate
▶ The set of pmfs for which

P({D, L}) = 0.4
▶ The set of pmfs for which

E (f ) = 0 with f = (−1, −4, 4)
▶ Is there a pmf compatible with

both?
(If yes, which?)

Win

Draw

Lose
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Learning — creating a representation

▶ from data, using estimation techniques (learning)

▶ from experts, using elicitation (asking questions)
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Multivariate probability mass functions: basic setup

▶ Index set N = {1, . . . , n}

▶ Multivariate variable X = (X1, X2, . . . , Xn)

▶ Set of possible outcomes x ∈ X = X1 × X2 × . . . × Xn

▶ Each possible outcome is assigned a probability value
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Marginal probability

▶ Marginal probabilities are probabilities defined for
events corresponding to setting some components of the variable to given values

▶ Let K ⊆ N and
XK := (Xk : k ∈ K )
xK ∈ XK := ×

k∈K
Xk

▶ Marginal probabilities follow from the additivity axiom:

P(XK = xK ) =
∑
z∈X

zK =xK

pz
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Marginal probability example
Problem setup
▶ X = (X1, X2, X3)
▶ X1 = {A, B, C}, X2 = {0, 1}, X3 = {+, −}

▶ x
x1 A A A A B B B B C C C C
x2 0 0 1 1 0 0 1 1 0 0 1 1
x3 + − + − + − + − + − + −

px 0.2 0.1 0.1 0 0.1 0 0 0.3 0 0 0 0.2

Inferences
▶ P(X1 = B) = 0.4
▶ P(X1 = A, X2 = 0) = 0.3
▶ P(X1 = C, X3 = +) = 0
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Conditional probabilities
▶ Conditional probabilities are probabilities that hold

▶ assuming some event is known to be true, or specifically
▶ assuming some random variables take some given values

▶ Let B ⊆ X for which P(B) > 0, then for A ⊆ X we have P(A|B) = P(A∩B)
P(B)

▶ Let K ⊆ N and
XK := (Xk : k ∈ K )
xK ∈ XK := ×

k∈K
Xk

with P(XK = xK ) > 0 then

P(XN\K = xN\K |XK = xK ) =
P(XK = xK , XN\K = xN\K )

P(XK = xK )
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Conditional probability example
Problem setup
▶ X = (X1, X2, X3)
▶ X1 = {A, B, C}, X2 = {0, 1}, X3 = {+, −}

▶ x
x1 A A A A B B B B C C C C
x2 0 0 1 1 0 0 1 1 0 0 1 1
x3 + − + − + − + − + − + −

px 0.2 0.1 0.1 0 0.1 0 0 0.3 0 0 0 0.2

Inferences
▶ P(X1 = A|X2 = 0, X3 = +) = 2

3
▶ P(X1 = B|X2 = 0, X3 = −) = 0
▶ P(X2 = 1|X1 = C, X3 = +) is not well-defined (why?)



Classical probability theory Multivariate probability theory 48 / 326

Conditional probability example
Problem setup
▶ X = (X1, X2, X3)
▶ X1 = {A, B, C}, X2 = {0, 1}, X3 = {+, −}

▶ x
x1 A A A A B B B B C C C C
x2 0 0 1 1 0 0 1 1 0 0 1 1
x3 + − + − + − + − + − + −

px 0.2 0.1 0.1 0 0.1 0 0 0.3 0 0 0 0.2

Inferences
▶ P(X1 = A|X2 = 0, X3 = +)?
▶ P(X1 = B|X2 = 0, X3 = −)?
▶ P(X2 = 1|X1 = C, X3 = +)?



Classical probability theory Multivariate probability theory 49 / 326

Conditional probability example
Problem setup
▶ X = (X1, X2, X3)
▶ X1 = {A, B, C}, X2 = {0, 1}, X3 = {+, −}

▶ x
x1 A A A A B B B B C C C C
x2 0 0 1 1 0 0 1 1 0 0 1 1
x3 + − + − + − + − + − + −

px 0.2 0.1 0.1 0 0.1 0 0 0.3 0 0 0 0.2

Inferences
▶ P(X1 = A|X2 = 0, X3 = +) = 2

3
▶ P(X1 = B|X2 = 0, X3 = −) = 0
▶ P(X2 = 1|X1 = C, X3 = +) is not well-defined (why?)



Classical probability theory Multivariate probability theory 50 / 326

Independence

▶ Two random variables X1 and X2 are independent
if their well-defined conditionals coincide with the marginals
for all x ∈ X :

P(X1 = x1|X2 = x2) = P(X1 = x1)
P(X2 = x2|X1 = x1) = P(X2 = x2)

▶ This is equivalent to the joint factorizing:

P(X1 = x1, X2 = x2) = P(X1 = x1)P(X2 = x2) for all x ∈ X
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Reasoning — deducing inferences and making decisions
▶ What can be done with (joint) probabilities

can also be done with marginal and conditional probabilities

Learning — creating a representation
Marginal and conditional probabilities can be either
▶ deduced from the learned (joint) probabilities, or
▶ learned directly, to together define the joint,

possibly using independence assumptions
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Reasoning — deducing inferences and making decisions
▶ What can be done with (joint) probabilities

can also be done with marginal and conditional probabilities

Learning — creating a representation
Marginal and conditional probabilities can be either
▶ deduced from the learned (joint) probabilities, or
▶ learned directly, to together define the joint,

possibly using independence assumptions
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Multivariate probability — exercise
Consider the (joint) random variable X = (X1, X2, X3) with X = {0, 1}3.
The joint probabilities are determined by the following information:

▶ X1 and X2 are independent

▶ It holds that P(X1 = 0) = 1/2 and P(X2 = 0) = 1/5

▶ The conditional probabilities P(X3 | X1, X2) are determined by the following table:

x1 0 0 1 1
x2 0 1 0 1

P(X3 = 0 | X1 = x1, X2 = x2) 1
3

1
4

1
5

1
6

Derive that P(X1 = 0 | X2 = 0, X3 = 0) = 5
8 .

As part of your calculation, you should derive and write a general expression for P(X1 | X2, X3)
in terms of the (symbolic) probabilities that are given—before filling in the specific numbers.
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A forecast states:

“There is an 80% probability
of showers for tomorrow”

What does this mean?
(More generally, what is the meaning of probability values?)



Interpretation of probability Overview of interpretations 56 / 326

Diversity in interpretations of probability

De Elía & Laprise (2005)

There are several schools of thought regarding the interpretation of probabilities,
none of them without flaws, internal contradictions, or paradoxes.

Major interpretations
physical evidential graded belief

frequentist classical subjective
propensity logical
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Physical
▶ Concerns statements about events related to physical systems
▶ Connected to frequency of occurrence of these events

Evidential
▶ A measure for the evidence supporting some (any) statement
▶ Typically intended to be objective

Graded belief
▶ A degree of belief about some (any) statement
▶ Typically subjective
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Frequentist (physical interpretation)

Kaplan (2014)

An event’s probability is defined as the limit of its relative frequency in many
trials (the long-run probability).

How short or long can or should the sequence of trials be?

Classical (evidential interpretation)

Wikipedia (paraphrased)

Assuming equally possible cases, the probability of an event is the ratio of the
relative number of cases favorable to it.

What does the assumption mean and what are its grounds?
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Frequentist (physical interpretation)

Kaplan (2014)

An event’s probability is defined as the limit of its relative frequency in many
trials (the long-run probability).

How short or long can or should the sequence of trials be?

Classical (evidential interpretation)

Wikipedia (paraphrased)

Assuming equally possible cases, the probability of an event is the ratio of the
relative number of cases favorable to it.

What does the assumption mean and what are its grounds?
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Subjective (graded belief interpretation)

Siegel & Wagner (2022)

A subjective probability is anyone’s opinion of what the probability is for an
event.

Is it a problem if probability values are opinions?

Betting interpretation (special case of subjective interpretation)
▶ Probabilities are defined by the subject’s betting behavior

(therefore also called behavioral interpretation)
▶ Relevant for our discussion of imprecise probability theories
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Subjective (graded belief interpretation)

Siegel & Wagner (2022)
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Betting game setup
▶ Two players:

▶ subject (gambler)
▶ bookie (proposes bets)

▶ Gambles from the subject’s
perspective:

1x (z) =
{

1 if z = x
0 if z ̸= x

for all x ∈ X

Eliciting probabilities
▶ For each of the gambles 1x , the subject offers

their fair price px
▶ The bookie can propose to exchange

one for the other, i.e., 1x − px or px − 1x ,
which the subject is committed to accept

▶ The px are the subject’s probabilities

▶ Should the subject state any set of fair prices?
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Betting game setup
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Coherence: deriving the axioms of probability from the betting game

▶ Assume the gambler specifies a negative price px < 0.

▶ Exchange proposed by the bookie:

px − 1x =
{

px − 1 < 0 if x occurs
px < 0 otherwise

▶ Should be unacceptable to the subject, because it implies a sure loss,
i.e., is negative whatever occurs!

▶ Nonnegativity axiom is required
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Coherence: deriving the axioms of probability from the betting game

▶ The bookie can choose to propose multiple bets, concerning some S ⊆ X .

▶ Combined exchange proposed by the bookie:

∑
x∈S

(px − 1x ) =
(∑

x∈S
px

)
− 1S , with 1S =

∑
x∈S

1x =
{

1 if S occurs
0 otherwise

▶ The fair price P(S) for the combined bet is
∑

x∈S px
▶ Additivity axiom follows
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Coherence: deriving the axioms of probability from the betting game

▶ The bookie can choose to combine the bets for all x ∈ X , so for the gamble 1X = 1

▶ Possible exchanges to be proposed: P(X ) − 1 or 1 − P(X )
▶ Exchanges do not depend on the x ∈ X that occurs

▶ If P(X ) ̸= 1, one possible proposal would result in a sure loss
▶ The normedness axiom is required
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Aleatoric uncertainty — the irreducible part
▶ Aleatoric uncertainty arises from random variation
▶ Additional information cannot reduce it
▶ Other names: variability, stochasticity, randomness, chance, risk

▶ Sources: spatial variation, temporal fluctuations, manufacturing or genetic
differences,. . .

Epistemic uncertainty — the reducible part

▶ Epistemic uncertainty arises from a lack of knowledge (also at inference time)
▶ Additional information can reduce or eliminate it
▶ Other names: incertitude, ambiguity, ignorance, imprecision
▶ Sources: limited sample size, mensurational limits (‘measurement error’), censoring,

poorly defined outcomes,. . .
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Aleatoric uncertainty examples
▶ Outcome of toss of fair coin

▶ Decay time of a radioactive atom
▶ Value of a decimal of

a randomly generated number

▶ ‘Noise’

Epistemic uncertainty examples
▶ Bias of a coin for tossing

▶ Weight of a proton
▶ Value of a decimal of

an irrational mathematical constant

▶ Model uncertainty
▶ Parameter values
▶ Dependencies
▶ Functional forms
▶ Level of abstraction



Limitations of probability theory Aleatoric vs. epistemic uncertainty 77 / 326

Aleatoric uncertainty examples
▶ Outcome of toss of fair coin
▶ Decay time of a radioactive atom

▶ Value of a decimal of
a randomly generated number

▶ ‘Noise’

Epistemic uncertainty examples
▶ Bias of a coin for tossing
▶ Weight of a proton

▶ Value of a decimal of
an irrational mathematical constant

▶ Model uncertainty
▶ Parameter values
▶ Dependencies
▶ Functional forms
▶ Level of abstraction



Limitations of probability theory Aleatoric vs. epistemic uncertainty 78 / 326

Aleatoric uncertainty examples
▶ Outcome of toss of fair coin
▶ Decay time of a radioactive atom
▶ Value of a decimal of

a randomly generated number

▶ ‘Noise’

Epistemic uncertainty examples
▶ Bias of a coin for tossing
▶ Weight of a proton
▶ Value of a decimal of

an irrational mathematical constant

▶ Model uncertainty
▶ Parameter values
▶ Dependencies
▶ Functional forms
▶ Level of abstraction



Limitations of probability theory Aleatoric vs. epistemic uncertainty 79 / 326

Aleatoric uncertainty examples
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Can probability theory
differentiate between

aleatoric and epistemic
uncertainty?
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The importance of sample size: coin-flipping example

Two different coins
Coin S L
Flips 2 2 · 106

Heads 50% 50%
Tails 50% 50%

Maximum likelihood
estimation gives

pHeads = pTails = 1
2

for both coins

▶ What can you say about the reliability
of the estimate for each coin?

▶ How would you communicate
the probability estimates?

▶ How would you communicate
derived inferences and decisions?

▶ What about inferences depending on
1000 random variables with varying reliabilities?
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Unknown dependence

▶ Nature of dependence between two events A and B often not known

positive intermediate negative

▶ Fréchet’s bounds:

P(A ∧ B) ∈
[
max

{
0, P(A) + P(B) − 1

}
, min

{
P(A), P(B)

}]
P(A ∨ B) ∈

[
max

{
P(A), P(B)

}
, min

{
1, P(A) + P(B)

}]
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Unknown dependence and Fréchet’s bounds

▶ Nature of dependence between two events A and B often not known

positive intermediate negative

▶ Fréchet’s bounds:

P(A ∧ B) ∈
[
max

{
0, P(A) + P(B) − 1

}
, min
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}]
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Can probability theory
differentiate between

aleatoric and epistemic
uncertainty?
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Ferson (2004)

[Aleatoric and epistemic uncertainty] must be treated differently;
variability should be modeled as randomness
with the methods of probability theory;
incertitude should be modeled as ignorance
with the methods of interval analysis.

Interval analysis
▶ Computation with intervals instead of with single numbers
▶ Example: [2, 4] − [3, 5] = [−3, 1]
▶ Ideal is to obtain tightest bounds
▶ In practice often outer bounds are used for computational reasons
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Rational agents

In Savage’s classical account
of Subjective Expected Utility
Theory, a ‘rational’ agent
▶ models uncertainty in a

problem using a single
probability measure

▶ chooses between
alternatives by
maximizing expected
utility

Urn example
▶ Urn with 20 red, 10 black, and 10 white balls

The rational agent uses a pmf with
pR = 1/2 and pB = pW = 1/4

▶ Consider three gambles whose payoff depends on
the outcome of a random draw from the urn:

R B W
fRB $100 $100 $0
fRW $100 $0 $100
fBW $0 $100 $100

The agent is indifferent between fRB and fRW,
which they strictly prefer to fBW
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Are real agents irrational?

Risk aversion
▶ Urn with 20 red, 20 gray balls
▶ Two gambles:

R G
fRG $50 $50
fR $100 $0

▶ Rational agents are
indifferent between fRG and fR

▶ Real agents
strictly prefer fRG over fR

Ambiguity aversion
▶ Two urns; the agent must choose one:

E 20 black balls, 20 white balls
U unknown proportion of black and white balls

▶ One gamble:
B W

fB $100 $0

▶ Rational agents must choose a pmf for U;
in case they choose pB = pW = 1/2
they are indifferent between urns E and U

▶ Real agents strictly prefer urn E over urn U
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Are real agents irrational?

Ellsberg paradox
▶ Urn with 20 red balls and 40 white or

black balls in unknown proportion

▶ Four gambles:
R B W

fR $100 $0 $0
fB $0 $100 $0

fRW = fR + fW $100 $0 $100
fBW = fB + fW $0 $100 $100

▶ Choose between fR and fB

Real agents
strictly prefer fR over fB,
for a rational agent implying
pR > pB

▶ Choose between fRW and fBW

Real agents
strictly prefer fBW over fRW,
for a rational agent implying
pR < pB
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Why go beyond probability theory?

To be able to deal with epistemic uncertainty:

▶ Distinguish sample size in uncertainty representation
▶ Express partial or missing knowledge

To let agents act according to a less restrictive definition of rationality:

▶ Be able to reflect justified aversions
▶ Model behavior that would otherwise be paradoxical
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Blood groups problem with cheap test

Problem setup
▶ A partial information sample:

A,B AB O A,B
A,B A,B A,B O

▶ A disease

▶ Two treatments with
differing effectiveness:

A B AB O
f1 0.5 0.6 0.7 0.1
f2 0.4 0.3 0.3 0.8

Representation
PMF from observed frequencies:

pA pB pAB pO
? ? 1

8
2
8

Reasoning
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Blood groups problem with cheap test

Problem setup
▶ A partial information sample:

A,B AB O A,B
A,B A,B A,B O

▶ A disease

▶ Two treatments with
differing effectiveness:

A B AB O
f1 0.5 0.6 0.7 0.1
f2 0.4 0.3 0.3 0.8

Representation
PMF from observed frequencies:

pA pB pAB pO
[0, 5

8 ] [0, 5
8 ] 1

8
2
8

Reasoning
▶ Bounds on P({A, O})?
▶ Bounds on Ep(f1)?
▶ Outcome with maximal lower probability?
▶ Treatment with highest upper expected

effectiveness?
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Blood groups problem with cheap test

Problem setup
▶ A partial information sample:

A,B AB O A,B
A,B A,B A,B O

▶ A disease

▶ Two treatments with
differing effectiveness:

A B AB O
f1 0.5 0.6 0.7 0.1
f2 0.4 0.3 0.3 0.8

Representation
PMF from observed frequencies:

pA pB pAB pO
[0, 5

8 ] [0, 5
8 ] 1

8
2
8

Reasoning
▶ P({A, O}) ∈ [2

8 , 7
8 ]

▶ Ep(f1) ∈= [3.4
8 , 3.9

8 ] = [0.425, 0.4875]
▶ Outcome O has maximal lower probability
▶ Both treatments have equal upper

expected effectiveness
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Basic setup, axioms, and terminology
Basic setup of the theory of probability intervals (Campos, Huete, Moral, 1994):
▶ Random variable X
▶ Finite set of outcomes X
▶ Each outcome x ∈ X is assigned lower and upper probability values (px , px )

▶ Set of compatible pmfs is called the credal set

Axioms
A probability interval (p, p), a pair of lower and upper probability mass functions,
must be:

1. Bounded: 0 ≤ px ≤ px ≤ 1 for all outcomes x ∈ X
2. Proper:

∑
x∈X px ≤ 1 ≤

∑
x∈X px

3. Reachable: px ≥ 1 −
∑

z ̸=x pz and px ≤ 1 −
∑

z ̸=x pz for all outcomes x ∈ X



Probability intervals Representation — formally encoding the uncertainty 107 / 326

Basic setup, axioms, and terminology
Basic setup of the theory of probability intervals (Campos, Huete, Moral, 1994):
▶ Random variable X
▶ Finite set of outcomes X
▶ Each outcome x ∈ X is assigned lower and upper probability values (px , px )

▶ Set of compatible pmfs is called the credal set

Axioms
A probability interval (p, p), a pair of lower and upper probability mass functions,
must be:

1. ?
2. ?
3. ?
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Basic setup, axioms, and terminology
Basic setup of the theory of probability intervals (Campos, Huete, Moral, 1994):
▶ Random variable X
▶ Finite set of outcomes X
▶ Each outcome x ∈ X is assigned lower and upper probability values (px , px )

▶ Set of compatible pmfs is called the credal set

Axioms
A probability interval (p, p), a pair of lower and upper probability mass functions,
must be:

1. Bounded: 0 ≤ px ≤ px ≤ 1 for all outcomes x ∈ X
2. Proper:

∑
x∈X px ≤ 1 ≤

∑
x∈X px

3. ?
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Unreachable bounds require tightening

A B O
p

3/8 3/8 7/8

p

1/8 1/8 1/8

A B

O

1 − (3
8 + 3

8) = 2/8

1 − (1
8 + 1

8) = 6/8
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Unreachable bounds require tightening

A B O
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p 1/8 1/8 1/8
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1 − (3
8 + 3

8) = 2/8

1 − (1
8 + 1

8) = 6/8



Probability intervals Representation — formally encoding the uncertainty 114 / 326

Basic setup, axioms, and terminology
Basic setup of the theory of probability intervals (Campos, Huete, Moral, 1994):
▶ Random variable X
▶ Finite set of outcomes X
▶ Each outcome x ∈ X is assigned lower and upper probability values (px , px )
▶ Set of compatible pmfs is called the credal set

Axioms
A probability interval (p, p), a pair of lower and upper probability mass functions,
must be:

1. Bounded: 0 ≤ px ≤ px ≤ 1 for all outcomes x ∈ X
2. Proper:

∑
x∈X px ≤ 1 ≤

∑
x∈X px

3. ?
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Unreachable bounds require tightening

A B O
p 3/8 3/8 6/8
p 1/8 1/8 2/8

A B

O

1 − (3
8 + 3

8) = 2/8

1 − (1
8 + 1

8) = 6/8
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Basic setup, axioms, and terminology
Basic setup of the theory of probability intervals (Campos, Huete, Moral, 1994):
▶ Random variable X
▶ Finite set of outcomes X
▶ Each outcome x ∈ X is assigned lower and upper probability values (px , px )
▶ Set of compatible pmfs is called the credal set

Axioms
A probability interval (p, p), a pair of lower and upper probability mass functions,
must be:

1. Bounded: 0 ≤ px ≤ px ≤ 1 for all outcomes x ∈ X
2. Proper:

∑
x∈X px ≤ 1 ≤

∑
x∈X px

3. Reachable: px ≥ 1 −
∑

z ̸=x pz and px ≤ 1 −
∑

z ̸=x pz for all outcomes x ∈ X
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Comparison by degree of imprecision

▶ A probability interval (p, p) is
included in or less imprecise than
a probability interval (q, q) if for all x ∈ X

[px , px ] ⊆ [qx , qx ]

▶ The corresponding credal sets will also
respect the same inclusion relationship

▶ Probability bounds will then respect the
same inclusion relationship for all S ⊆ X :

[P(S), P(S)] ⊆ [Q(S), Q(S)]

A B

O

1/83/8

1/8
3/8

2/8

6/8

A B

O

1/84/8

1/8

4/8

1/8

6/8
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Comparison by degree of imprecision

▶ A probability interval (p, p) is
included in or less imprecise than
a probability interval (q, q) if for all x ∈ X

[px , px ] ⊆ [qx , qx ]

▶ The corresponding credal sets will also
respect the same inclusion relationship

▶ Probability bounds will then respect the
same inclusion relationship for all S ⊆ X :

[P(S), P(S)] ⊆ [Q(S), Q(S)]

A B

O

1/83/8

1/8
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2/8

6/8

A B
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4/8

1/8
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Lower and upper probability mass sums

P˜(S) :=
∑
x∈S

px , P̃(S) :=
∑
x∈S

px

Lower probability

P(S) := max
{
P˜(S), 1 − P̃(Sc)

}
Upper probability

P(S) := min
{
P̃(S), 1 − P˜(Sc)

}

A B O AB
p 3/8 3/8 5/8 5/8
p 1/8 1/8 3/8 0/8

Inferences
▶ P({A, B}) = 2/8
▶ P({B, O}) = 7/8
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Lower and upper probability mass sums

P˜(S) :=
∑
x∈S

px , P̃(S) :=
∑
x∈S

px

Lower probability

P(S) := max
{
P˜(S), 1 − P̃(Sc)

}
Upper probability

P(S) := min
{
P̃(S), 1 − P˜(Sc)

}

A B O AB
p 3/8 3/8 5/8 5/8
p 1/8 1/8 3/8 0/8

Inferences
▶ Lower probability P({A, B})?
▶ Upper probability P({B, O})?
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Lower and upper probability mass sums

P˜(S) :=
∑
x∈S

px , P̃(S) :=
∑
x∈S

px

Lower probability

P(S) := max
{
P˜(S), 1 − P̃(Sc)

}
Upper probability

P(S) := min
{
P̃(S), 1 − P˜(Sc)

}

A B O AB
p 3/8 3/8 5/8 5/8
p 1/8 1/8 3/8 0/8

Inferences
▶ P({A, B}) = 2/8
▶ P({B, O}) = 7/8
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Comparison by degree of imprecision

▶ A probability interval (p, p) is
included in or less imprecise than
a probability interval (q, q) if for all x ∈ X

[px , px ] ⊆ [qx , qx ]

▶ The corresponding credal sets will also
respect the same inclusion relationship

▶ Probability bounds will then respect the
same inclusion relationship for all S ⊆ X :

[P(S), P(S)] ⊆ [Q(S), Q(S)]

A B

O

1/83/8

1/8
3/8

2/8

6/8

A B

O

1/84/8

1/8

4/8

1/8

6/8



Overview

Kick-off (slot 1)

Classical probability theory (slot 1)

Interpretation of probability (slot 2)

Limitations of probability theory (slot 2)

Probability intervals (slot 3)

Credal sets (slot 3–4)
Representation
Reasoning
Multivariate credal sets

Acceptability & Desirability (slot 4–5)

Interval expectation & probability (slot 5–6)
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A B

O

A B

O

A B

O
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Credal sets determined by bounds
Set of pmfs (probability measures)
determined by non-strict constraints
specified as
▶ a probability interval

▶ interval (lower & upper)
probabilities or expectations (later)

Convex and closed sets
Computationally convenient

Directly specified credal sets
Set of pmfs (probability measures) specified
directly and explicitly as such by
▶ discrete sets (‘sets of Bayesians’)

▶ neighborhoods of specific pmfs
(‘robust Bayesians’)

Generally non-convex and not closed
Can have impact on, e.g., decision rules
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Set of pmfs (probability measures)
determined by non-strict constraints
specified as
▶ a probability interval
▶ interval (lower & upper)

probabilities or expectations (later)

Convex and closed sets
Computationally convenient

Directly specified credal sets
Set of pmfs (probability measures) specified
directly and explicitly as such by
▶ discrete sets (‘sets of Bayesians’)
▶ neighborhoods of specific pmfs

(‘robust Bayesians’)

Generally non-convex and not closed
Can have impact on, e.g., decision rules



Credal sets Representation — formally encoding the uncertainty 130 / 326

Credal sets determined by bounds
Set of pmfs (probability measures)
determined by non-strict constraints
specified as
▶ a probability interval
▶ interval (lower & upper)

probabilities or expectations (later)

Convex and closed sets
Computationally convenient

Directly specified credal sets
Set of pmfs (probability measures) specified
directly and explicitly as such by
▶ discrete sets (‘sets of Bayesians’)
▶ neighborhoods of specific pmfs

(‘robust Bayesians’)

Generally non-convex and not closed
Can have impact on, e.g., decision rules
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Basic setup, axioms, and terminology

Basic setup of the theory of credal sets:
▶ Random variable X
▶ Set of outcomes X
▶ A credal set of probability mass functions for X is specified

▶ Uses representation from classical probability as building block

Axioms
A credal set C must be:

1. A subset of the set of all probability mass functions for X : C ⊆ PX

2. Non-empty: C ̸= ∅
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Basic setup, axioms, and terminology

Basic setup of the theory of credal sets:
▶ Random variable X
▶ Set of outcomes X
▶ A credal set of probability mass functions for X is specified
▶ Uses representation from classical probability as building block

Axioms
A credal set C must be:

1. A subset of the set of all probability mass functions for X : C ⊆ PX

2. Non-empty: C ̸= ∅
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Special types of credal sets
▶ The vacuous credal set

PS
X := {p ∈ PX : P(S) = 1}

relative to some event S ⊆ X
expresses that X ∈ S and nothing more

▶ The vacuous credal set PX
X = PX

expresses complete ignorance
▶ Singleton credal sets {p} correspond to

the unique pmf p they contain
▶ Linear-vacuous or ε-contamination credal sets

are a simple neighborhood model:

Cp,ε :=
{
(1 − ε)p + εq : q ∈ PX

}



Credal sets Reasoning — deducing inferences and making decisions 135 / 326

Lower & upper probability as lower & upper envelopes

P(S) := inf
p∈C

Pp(S) P(S) := sup
p∈C

Pp(S)

Lower & upper expectation as lower & upper envelopes

E (f ) := inf
p∈C

Ep(f ) E (f ) := sup
p∈C

Ep(f )

Envelope calculation as linear optimization over the credal set

E (f ) = inf
p∈C

Ep(f ) = inf
p∈C

∑
x∈X

px f (x)

= inf
p∈ext C

∑
x∈X

px f (x)

(Extreme points exist for closed credal sets and fully characterize convex ones.)
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Lower & upper probability as lower & upper envelopes

P(S) := inf
p∈C

Pp(S) P(S) := sup
p∈C

Pp(S)

Lower & upper expectation as lower & upper envelopes

E (f ) := inf
p∈C

Ep(f ) E (f ) := sup
p∈C

Ep(f )

Envelope calculation as linear optimization over the credal set

E (f ) = inf
p∈C

Ep(f ) = inf
p∈C

∑
x∈X

px f (x)

= inf
p∈ext C

∑
x∈X

px f (x)

For finite or closed credal sets C, inf/sup becomes min/max
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Example setup
▶ linear-vacuous credal set Cp,ε

▶ mixture coefficient ε = 1
3

▶ pmf
p = (pA, pB, pO) = (1

4 , 1
4 , 2

4)

A B

O

( 3
6 , 1

6 , 2
6 ) ( 1

6 , 3
6 , 2

6 )

( 1
6 , 1

6 , 4
6 )

▶ function
f =

(
f (A), f (B), f (O)

)
= (1, 0, −1)

Inferences
▶ Lower probability

▶ Lower expectation



Credal sets Reasoning — deducing inferences and making decisions 139 / 326
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Example setup
▶ linear-vacuous credal set Cp,ε

▶ mixture coefficient ε = 1
3

▶ pmf
p = (pA, pB, pO) = (1

4 , 1
4 , 2

4)

A B

O

( 3
6 , 1

6 , 2
6 ) ( 1

6 , 3
6 , 2

6 )

( 1
6 , 1

6 , 4
6 )

▶ function
f =

(
f (A), f (B), f (O)

)
= (1, 0, −1)

Inferences
▶ Lower probability

P({B, O})

= min
q∈PX

(
2
3(pB + pO) + 1

3(qB + qO)
)

= 2
3

3
4 + 1

30
= 1

2

▶ Lower expectation
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Example setup
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Example setup
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3(qB + qO)
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3

3
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30
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2

▶ Lower expectation

E (f )

= min
q∈PX

(
2
3

∑
x∈X

px f (x) + 1
3

∑
x∈X

qx f (x)
)

= min
q∈PX

(
2
3(pA − pO) + 1

3(qA − qO)
)

= 2
3(−1

4) + 1
3(−1)

= −1
2
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Example setup
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Example setup
▶ linear-vacuous credal set Cp,ε
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Lower & upper probability as lower & upper envelopes

P(S) := inf
p∈C

Pp(S) P(S) := sup
p∈C

Pp(S)

Lower & upper expectation as lower & upper envelopes

E (f ) := inf
p∈C

Ep(f ) E (f ) := sup
p∈C

Ep(f )

Envelope calculation as linear optimization over the credal set’s extreme points

E (f ) = inf
p∈C

Ep(f ) = inf
p∈C

∑
x∈X

px f (x) = inf
p∈ext C

∑
x∈X

px f (x)

(Extreme points exist for closed credal sets and fully characterize convex ones.)
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Example setup
▶ linear-vacuous credal set Cp,ε

▶ mixture coefficient ε = 1
3

▶ pmf
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4 , 1
4 , 2

4)

A B

O

( 3
6 , 1

6 , 2
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6 , 3
6 , 2
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6 , 1
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Example setup
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▶ Lower probability
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= min
q∈ext Cp,ε

(qB + qO)

= min{3
6 , 5

6 , 5
6}

= 3
6 = 1

2

▶ Lower expectation
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Example setup
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6 , 5
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2

▶ Lower expectation

E (f )

= min
q∈ext Cp,ε

∑
x∈X

qx f (x)

= min
q∈ext Cp,ε

(qA − qO)

= min{1
6 , −1

6 , −3
6}

= −3
6 = −1

2
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Example setup
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Example setup
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6 ) ( 1

6 , 3
6 , 2

6 )

( 1
6 , 1

6 , 4
6 )

▶ function
f =

(
f (A), f (B), f (O)

)
= (1, 0, −1)

Inferences
▶ Lower probability

P({B, O}) = min
q∈ext Cp,ε

(qB + qO)

= min{3
6 , 5

6 , 5
6}

= 3
6 = 1

2

▶ Lower expectation

E (f ) = min
q∈ext Cp,ε

∑
x∈X

qx f (x)

= min
q∈ext Cp,ε

(qA − qO)

= min{1
6 , −1

6 , −3
6}

= −3
6 = −1

2
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Multivariate credal sets: basic setup & basic idea

▶ Index set N = {1, . . . , n}

▶ Multivariate variable X = (X1, X2, . . . , Xn)

▶ Set of possible outcomes x ∈ X = X1 × X2 × . . . × Xn

▶ A joint credal set CX of joint probability mass functions for X is specified

Apply probabilistic operations pointwise
to the elements of the credal sets involved
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Marginal credal sets

▶ A marginal credal set is defined for a subset of the random variables

▶ Let K ⊆ N, then
▶ XK := (Xk : k ∈ K ) and xK ∈ XK :=×k∈K Xk

▶ Notation: pXK is the XK -marginal of the joint pmf pX

▶ A marginal credal set is obtained by marginalizing each of its member pmfs:

CXK =
{

pXK : pX ∈ CX
}
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Marginal credal sets example

Problem setup
▶ Two random variables X1 and X2

with outcome spaces
X1 = {0, 1} and X2 = {−, +}

▶ Joint credal set CX := Cp,ε with
ε unspecified and p given below
(in black), together with its
marginals (in green)

p 0 1 pX2

− 3/9 1/9 4/9
+ 2/9 3/9 5/9

pX1 5/9 4/9

Inference
Marginal credal set CX1

Solution
▶ Marginalize element q = (1 − ε)p + εr of

CX , where r ∈ PX :

qX1
x1 =

∑
x2∈X2

q(x1,x2) = (1 − ε)pX1
x1 + εrX1

x1
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Marginal credal sets example

Problem setup
▶ Two random variables X1 and X2

with outcome spaces
X1 = {0, 1} and X2 = {−, +}

▶ Joint credal set CX := Cp,ε with
ε unspecified and p given below
(in black), together with its
marginals (in green)

p 0 1 pX2

− 3/9 1/9 4/9
+ 2/9 3/9 5/9

pX1 5/9 4/9

Inference
Marginal credal set CX1

Solution
▶ Marginalize element q = (1 − ε)p + εr of

CX , where r ∈ PX :

qX1
x1 =

∑
x2∈X2

q(x1,x2) = (1 − ε)pX1
x1 + εrX1

x1

▶ Gather all marginalized elements:

CX1 = CpX1 ,ε

because rX1 ranges over PX1

as r ranges over PX
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Marginal credal sets example

Problem setup
▶ Two random variables X1 and X2

with outcome spaces
X1 = {0, 1} and X2 = {−, +}

▶ Joint credal set CX := Cp,ε with
ε unspecified and p given below
(in black), together with its
marginals (in green)

p 0 1 pX2

− 3/9 1/9 4/9
+ 2/9 3/9 5/9

pX1 5/9 4/9

Inference
Marginal credal set CX1

Solution
▶ Marginalize element q = (1 − ε)p + εr of

CX , where r ∈ PX :

qX1
x1 =

∑
x2∈X2

q(x1,x2) = (1 − ε)pX1
x1 + εrX1

x1

q 0 1
− (1 − ε)3/9 + εr(0,−) (1 − ε)1/9 + εr(1,−)
+ (1 − ε)2/9 + εr(0,+) (1 − ε)3/9 + εr(1,+)

qX1 (1 − ε)5/9 + εrX1
0 (1 − ε)4/9 + εrX1

1
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Conditional credal sets

▶ A conditional credal set is determined by
▶ assuming some event is known to be true, or specifically
▶ assuming some random variables take some given values: XK = xK , with K ⊂ N

▶ Notation: pXN\K |xK is the XK -conditional of the joint pmf pX

▶ A conditional credal set is obtained by conditioning each of its elements
for which this operation is defined:

CXN\K |xK =
{

pXN\K |xK :
(
pX ∈ CX ∧ pXK (xK ) > 0

)}
This is called conditioning by regular extension
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Conditional credal sets example
Problem setup
▶ Two random variables X1 and X2

with outcome spaces X1 = {0, 1}
and X2 = {−, +}

▶ Joint credal set CX := CΓ with
elements q given below (in black),
together with its marginals (in
green), with γ ∈ Γ = [−3

9 , 3
9 ]

q 0 1 qX2

− 3/9 − γ 1/9 4/9 − γ
+ 2/9 3/9 + γ 5/9 + γ

qX1 5/9 − γ 4/9 + γ

Inference
Conditional credal set CX1|+

Solution
▶ Condition elements q of CX :

qX1|+ =
q(X1,+)

qX2
+

= (2/9, 3/9 + γ)
5/9 + γ

= (r , 1 − r),

with r = 2/9
5/9+γ

▶ Gather all conditioned elements:

CX1|+ =
{

(r , 1 − r) : r ∈ [1
4 , 1]

}
(Exercise: show that CX1|+ = C(1,0), 3

4 )
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Complete independence for credal sets

▶ Different generalizations of (stochastic) independence to credal sets are possible
▶ Here, we only consider the independence concept

associated to the ‘sets of Bayesians’ interpretation
▶ Notation: p ⊗ q denotes the independent product of two pmfs p and q

Definition of complete independence
Consider X = (X1, X2); the random variables X1 and X2 are completely independent
if they are stochastically independent for each of the pmfs in the joint credal set CX :

CX ⊆ CX1 ⊗ CX2 :=
{

pX1 ⊗ pX2 : pX1 ∈ CX1 , pX2 ∈ CX2
}

Not convex even if CX1 and CX2 are!
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Complete independence example
Problem setup
▶ Random variables X1 and X2 with outcome spaces X1 = {0, 1} and X2 = {−, +}
▶ Marginal credal sets CX1 := C( 1

2 , 1
2 ), 1

2 and CX2 := C( 1
3 , 2

3 ), 1
3

Goal
Show that their completely independent joint credal set is not convex

Demonstration
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Complete independence example
Problem setup
▶ Random variables X1 and X2 with outcome spaces X1 = {0, 1} and X2 = {−, +}
▶ Marginal credal sets CX1 := C( 1

2 , 1
2 ), 1

2 and CX2 := C( 1
3 , 2

3 ), 1
3

Goal
Show that their completely independent joint credal set is not convex

Demonstration
▶ We construct a counterexample to convexity, i.e., we construct a convex mixture of

elements of the joint that lies outside the joint because it does not factorize

▶ An element q of CX = CX1 ⊗ CX2 is defined for every rX1 ∈ PX1 and rX2 ∈ PX2 by

q(x1,x2) = (1
2pX1

x1 + 1
2 rX1

x1 )(2
3pX2

x2 + 1
3 rX2

x2 )
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Complete independence example
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2 ), 1

2 and CX2 := C( 1
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Demonstration

1
2

0 1 qX2

−

2/36 6/36

2/9
+

7/36 21/36

7/9

qX1 1/4 3/4

rX1
0 = rX2

− = 0

+ 1
2

0 1 qX2

−

15/36 5/36

5/9
+

12/36 4/36

4/9

qX1 3/4 1/4

rX1
0 = rX2

− = 1

=
0 1 qX2

− 17/72 11/72

7/18

+ 19/72 25/72

11/18

qX1

1/2 1/2
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not factorizing



Overview

Kick-off (slot 1)

Classical probability theory (slot 1)

Interpretation of probability (slot 2)

Limitations of probability theory (slot 2)

Probability intervals (slot 3)

Credal sets (slot 3–4)

Acceptability & Desirability (slot 4–5)
Representation
Reasoning
Axiom variants
Multivariate acceptability

Interval expectation & probability (slot 5–6)
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Gambles
Earlier appearance of ‘gamble’:
▶ In the betting game,

indicators 1x and 1S

▶ In urn problems, scaled
indicators fi ∝ 1S

▶ In blood groups example,
effectiveness descriptions f1,
f2, positive functions on X

Exchanges
▶ In the betting game, differences between fair

prices and gambles px − 1x = px · 1X − 1x and
P(S) − 1S

▶ In urn problems, preferences between gambles fi
and fj can be seen as preference between their
difference fi − fj and the zero gamble 0 = 0 · 1X
(status quo)

▶ Differences of gambles are again gambles

Linear space of gambles
(Bounded) real-valued functions in L = (X → R), as foundation for representation
(or linear subspace of functions instead)
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Basic setup, axioms, and terminology
Basic setup of acceptability:
▶ Random variable X
▶ Finite set of outcomes X
▶ Each gamble f ∈ L is acceptable (f ∈ D) or not (f /∈ D)

Axioms
A set of acceptable gambles D is coherent when:

Gamble (vector) inequalities: f ⋗ 0 iff min f > 0, f ≥ 0 iff min f ≥ 0, f > 0 iff f ≥ 0 and f ̸= 0
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Basic setup, axioms, and terminology
Basic setup of acceptability:
▶ Random variable X
▶ Finite set of outcomes X
▶ Each gamble f ∈ L is acceptable (f ∈ D) or not (f /∈ D)

Axioms
A set of acceptable gambles D is coherent when:
D1. if f ⋖ 0, then f /∈ D (avoiding sure loss)
D2. if f ≥ 0, then f ∈ D (accepting nonnegative gain)
D3. if f ∈ D and λ ∈ R>, then λ · f ∈ D (positive scaling)
D4. if f , g ∈ D, then f + g ∈ D (combination)

Gamble (vector) inequalities: f ⋗ 0 iff min f > 0, f ≥ 0 iff min f ≥ 0, f > 0 iff f ≥ 0 and f ̸= 0
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Basic setup, axioms, and terminology
Basic setup of acceptability:
▶ Random variable X
▶ Finite set of outcomes X
▶ Each gamble f ∈ L is acceptable (f ∈ D) or not (f /∈ D)

Axioms
A set of acceptable gambles D is coherent when:
D1. L⋖ ∩ D = ∅ (avoiding sure loss)
D2. L≥ ⊆ D (accepting nonnegative gain)
D3. R> · D ⊆ D (positive scaling)
D4. D + D ⊆ D (combination)

Gamble (vector) inequalities: f ⋗ 0 iff min f > 0, f ≥ 0 iff min f ≥ 0, f > 0 iff f ≥ 0 and f ̸= 0
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Visualizing gambles

The avoiding loss and accepting gain axioms
constrain D

H

T

f

f (H)

f (T )

Coherent sets D are cones because of
positive scaling and combination

L⋖

H

T

D
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Visualizing sets of acceptable gambles
The avoiding loss and accepting gain axioms

constrain D

L⋖

H

T

L≥

Coherent sets D are cones because of
positive scaling and combination

L⋖

H

T

D
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Visualizing sets of acceptable gambles
The avoiding loss and accepting gain axioms

constrain D

L⋖

H

T

L≥

Coherent sets D are cones because of
positive scaling and combination

L⋖

H

T

D
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From acceptability
to preference
▶ Consider two gambles,

f and g
▶ Depending on where

their differences
f − g and g − f lie,
different preference
relations hold
between them

Derived preference relations
▶ Non-strict preference: f ≽ g iff f − g ∈ D
▶ Indifference: f ≈ g iff f ≽ g and g ≽ f
▶ Incomparability: f ≍ g iff f ̸≽ g and g ̸≽ f
▶ Strict preference: f ≻ g iff f − g ∈ D − L⋖

Background preference/order implied by D1 and D2
▶ Non-strict preference: f ≽ g iff f ≥ g
▶ Indifference: if f = g , then f ≈ g
▶ Incomparability: f ≍ g iff f ̸≥ g and g ̸≥ f
▶ Strict preference: f ≻ g iff f ⋗ g
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Assessments
An assessment A is a set of gambles the subject finds acceptable

Directly specified

Incurs sure loss!

Indifference statements Indirectly specified
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Positive linear hull operation

Two of the axioms are ‘generative’:

▶ Positive scaling (D3): if f ∈ A, then all gambles in
{λ · f : λ ∈ R>} must also be considered acceptable

▶ Combination (D4): if f , g ∈ A, then f + g must also
be considered acceptable

▶ Together, they imply that all gambles in the positive
linear hull (conical hull) posi A of A must be
considered acceptable

posi A :=
{ n∑

k=1
λk · fk : λk ∈ R>, fk ∈ A, n ∈ N

}

Incurs sure loss!
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Natural extension

▶ The accepting gain axiom D2 imposes
a background assessment L≥

▶ The natural extension is the positive linear hull of
the union of the background and subject’s
assessment:

E(A) := posi(A ∪ L≥)
= (posi A + L≥) ∪ L≥

▶ The natural extension E(A) avoids sure loss
(satisfies D1) iff posi A avoids sure loss

Incurs sure loss!
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Least committal extension

Set of all coherent sets of acceptable gambles
▶ This set can be (partially) ordered

according to set inclusion ⊂
▶ If D1 ⊂ D2, then D1 is called less committal than D2
▶ The least committal set of acceptable gambles is L≥

Coherent extensions of an assessment A that avoids sure loss
▶ In general, there are multiple coherent extensions of A

▶ The least committal extension is the smallest one: it adds the least commitments
(it is conservative in that regard)

▶ The least committal extension is equal to the intersection of all coherent extensions
▶ The least committal extension coincides with the natural extension
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Changing how D is constrained
▶ Replacing the background sets L⋖/L≥ in Axiom D1/D2 (extra relevant for infinite X )
▶ Adding additional axioms constraining, e.g., topological closure

▶ L⋖/L≥ and D closed
(almost desirability, Walley, 1991)

L⋖

L≥

L⋖

D

▶ L</L≥ (favorable gambles,
Seidenfeld et al., 1990; Walley, 2000)

L<

L≥

L<

D

▶ L≤/L> (desirability, De Cooman,
Thursday! D1 becomes 0 /∈ D)

L>

L≤

D

L≤

▶ L⋖/L⋗ (acceptable bets,
Williams, 1974)

L⋖

L⋗

L⋖

D



Acceptability & Desirability Axiom variants 233 / 326

Changing how D is constrained
▶ Replacing the background sets L⋖/L≥ in Axiom D1/D2 (extra relevant for infinite X )
▶ Adding additional axioms constraining, e.g., topological closure

▶ L⋖/L≥ and D closed
(almost desirability, Walley, 1991)

L⋖

L≥

L⋖

D

▶ L</L≥ (favorable gambles,
Seidenfeld et al., 1990; Walley, 2000)

L<

L≥

L<

D

▶ L≤/L> (desirability, De Cooman,
Thursday! D1 becomes 0 /∈ D)

L>

L≤

D

L≤

▶ L⋖/L⋗ (acceptable bets,
Williams, 1974)

L⋖

L⋗

L⋖

D



Acceptability & Desirability Axiom variants 234 / 326

Changing what shape D can take

▶ Replacing the generating rules in
Axioms D3 and D4

▶ Adding additional generating rules

▶ Example: replace positive scaling and
combination by convexity,
if f , g ∈ D and µ ∈ [0, 1],
then µ · f + (1 − µ) · g ∈ D
This means replacing the positive linear
hull posi by the convex hull co

L⋖

H

T

D
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Multivariate acceptability: basic setup

▶ Index set N = {1, . . . , n}

▶ Multivariate variable X = (X1, X2, . . . , Xn)

▶ Set of possible outcomes x ∈ X = X1 × X2 × . . . × Xn

▶ Linear space of gambles L on X

▶ We assume given a coherent set of acceptable gambles D ⊂ L
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Marginal set of acceptable gambles

▶ A marginal set of acceptable gambles is defined on a linear subspace of L
▶ We consider subspaces defined by LK := (XK → R), with K ⊆ N
▶ We want to know whether a gamble f on XK is acceptable

▶ For this, we lift it to its cylindrical extension ↑XN\K f defined by

(↑XN\K f )(x) = f (xK )

and check whether that is acceptable

▶ The marginal set of acceptable gambles is the inverse image of the cylindrical
extension:

DK := ↑−1
XN\K

D =
{

f ∈ LK : ↑XN\K f ∈ D
}
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Conditional set of acceptable gambles
▶ A conditional set of acceptable gambles is determined by

▶ assuming some event is known to be true, or specifically
▶ assuming some random variables take some given values: XK = xK , with K ⊂ N

▶ We consider the linear space LN\K := (XN\K → R)
▶ We want to know whether a gamble f on XN\K is conditionally acceptable

▶ For this, we lift it to the called-off gamble

(↑XK f ) · 1XK =xK

and check whether that is acceptable

▶ The conditional set of acceptable gambles is the inverse image of this procedure:

D⌋(XK = xK ) :=
{

f ∈ LN\K : (↑XK f ) · 1XK =xK ∈ D
}
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Epistemic irrelevance & independence

▶ We here consider the case |N| = 2

▶ The random variable X2 is epistemically irrelevant to X1
if the X2-conditionals coincide with the X1-marginal for all x2 ∈ X2:

D⌋(X2 = x2) = D1

▶ The random variables X1 and X2 are epistemically independent
if they are epistemically irrelevant to each other

▶ Structural assumptions such as these can be combined with natural extension
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Probability interval example

A B

O

1/84/8

1/8

4/8

1/8

6/8
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Interval probability example

A B

O

P({B,O}) = 4/8

P({A,O}) = 7/8

P({B}) = 4/8

P({O}) = 1/8
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Interval expectation example

A B

O

E (f ) = −2/3
f = (1, 0, −1)

E (f ) = 1/4
f = (1, 0, −1)

E (g) = −1/13
g = (1, −1, 5

13 )

E (h) = −19/50
h = (−1, 1, − 13

25 )
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Interval expectation example

A B

O

E (f ) = −2/3
f = (1, 0, −1)

E (f ) = 1/4
f = (1, 0, −1)

E (g) = −1/13
g = (1, −1, 5

13 )

E (h) = −19/50
h = (−1, 1, − 13

25 )
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Basic setup, axioms, and terminology

Basic setup of the theory of coherent interval probability & expectation:
▶ Random variable X
▶ Set of outcomes X
▶ Set of events S ⊆ 2X or set of gambles F ⊆ L

▶ Each gamble f ∈ F is assigned a lower or upper expectation value

Axioms
The lower and upper expectation operators E and E , must be:

?
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Basic setup, axioms, and terminology

Basic setup of the theory of coherent interval expectation:
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▶ Set of outcomes X
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▶ Each gamble f ∈ F is assigned a lower or upper expectation value
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Eliciting lower & upper expectations with a relaxed betting game
▶ Two players:

▶ subject: gambler, states acceptable exchanges, their ‘assessment’
▶ bookie: chooses combination of acceptable exchanges

▶ Gambles from the subject’s perspective: f ∈ F

▶ For each f , the subject can state a
supremum acceptable buying price E (f )

▶ This E (f ) is the subject’s
lower expectation for f

(also called lower prevision P(f ))

▶ For each f , the subject can state an
infimum acceptable selling price E (f )

▶ This E (f ) is the subject’s
upper expectation for f

(also called upper prevision P(f ))

indeterminate
E (f )α

exchange f − α
acceptable

E (f ) β

exchange β − f
acceptable
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Eliciting lower & upper expectations with a relaxed betting game
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▶ subject: gambler, states acceptable exchanges, their ‘assessment’
▶ bookie: chooses combination of acceptable exchanges

▶ Gambles from the subject’s perspective: f ∈ F

▶ For each f , the subject can state a
supremum acceptable buying price E (f )
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lower expectation for f

(also called lower prevision P(f ))

▶ For each f , the subject can state an
infimum acceptable selling price E (f )

▶ This E (f ) is the subject’s
upper expectation for f

(also called upper prevision P(f ))

indeterminate
E (f )α

exchange f − α
acceptable

E (f ) β

exchange β − f
acceptable
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Assessment as a set of acceptable gambles
▶ The subject states E (f ) for f and E (g) for g
▶ The corresponding assessment is

A =
{

f − α · 1X : α < E (f )
}

∪{
β · 1X − g : β > E (g)

}

▶ f − E (f ) and E (g) − g are called
marginal gambles; collect them in a set M, then

A =
⋃

h∈M
{h + ε · 1X : ε ∈ R>} = M +R> · 1X
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Assessment as a set of acceptable gambles
▶ The subject states E (f ) for f and E (g) for g
▶ The corresponding assessment is

A =
{

f − α · 1X : α < E (f )
}

∪{
β · 1X − g : β > E (g)

}

▶ f − E (f ) and E (g) − g are called
marginal gambles; collect them in a set M, then

A =
⋃

h∈M
{h + ε · 1X : ε ∈ R>} = M +R> · 1X

f

g
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Assessment as a set of acceptable gambles
▶ The subject states E (f ) for f and E (g) for g
▶ The corresponding assessment is

A =
{

f − α · 1X : α < E (f )
}

∪{
β · 1X − g : β > E (g)

}

▶ f − E (f ) and E (g) − g are called
marginal gambles; collect them in a set M, then

A =
⋃

h∈M
{h + ε · 1X : ε ∈ R>} = M +R> · 1X

f

f − E (f )

g
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Assessment as a set of acceptable gambles
▶ The subject states E (f ) for f and E (g) for g
▶ The corresponding assessment is
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f − α · 1X : α < E (f )
}

∪{
β · 1X − g : β > E (g)
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Assessment as a set of acceptable gambles
▶ The subject states E (f ) for f and E (g) for g
▶ The corresponding assessment is

A =
{

f − α · 1X : α < E (f )
}

∪{
β · 1X − g : β > E (g)

}

▶ f − E (f ) and E (g) − g are called
marginal gambles; collect them in a set M, then

A =
⋃

h∈M
{h + ε · 1X : ε ∈ R>} = M +R> · 1X

f

f − E (f )

g

−g
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Assessment as a set of acceptable gambles
▶ The subject states E (f ) for f and E (g) for g
▶ The corresponding assessment is
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Assessment as a set of acceptable gambles
▶ The subject states E (f ) for f and E (g) for g
▶ The corresponding assessment is
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Assessment as a set of acceptable gambles & marginal gambles
▶ The subject states E (f ) for f and E (g) for g
▶ The corresponding assessment is

A =
{

f − α · 1X : α < E (f )
}

∪{
β · 1X − g : β > E (g)

}

▶ f − E (f ) and E (g) − g are called
marginal gambles; collect them in a set M, then

A =
⋃

h∈M
{h + ε · 1X : ε ∈ R>} = M +R> · 1X

f

f − E (f )

g

−g

E (g) − g
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Avoiding sure loss & natural extension
▶ We work in the language of acceptable gambles and

later translate to the language of interval expectation

▶ posi A avoids sure loss iff

posi A ∩ L⋖ ̸= ∅ ⇔ posi(M + R> · 1X ) ∩ L⋖ ̸= ∅
⇔ (posi M + R> · 1X ) ∩ L⋖ ̸= ∅
⇔ posi M ∩ L⋖ ̸= ∅

▶ The natural extension is then

E(A) = (posi A + L≥) ∪ L≥

= (posi M + R> · 1X + L≥) ∪ L≥

= (posi M + L⋗) ∪ L≥

f − E (f )
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Avoiding sure loss & natural extension
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From acceptable gambles to lower & upper expectations

▶ Consider a coherent set of acceptable gambles D and
a gamble f

▶ We infer lower and upper expectations for f
using the betting game interpretation

▶ Lower expectation

E (f ) := sup{α ∈ R : f − α ∈ D}

▶ Upper expectation

E (f ) := inf{β ∈ R : β − f ∈ D}

D

f
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From acceptable gambles to lower & upper expectations

▶ Consider a coherent set of acceptable gambles D and
a gamble f
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From acceptable gambles to lower & upper expectations

▶ Consider a coherent set of acceptable gambles D and
a gamble f

▶ We infer lower and upper expectations for f
using the betting game interpretation

▶ Lower expectation

E (f ) := sup{α ∈ R : f − α ∈ D}

▶ Upper expectation

E (f ) := inf{β ∈ R : β − f ∈ D}

f

f − E (f ) −f

E (f ) − f
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Natural extension to lower and upper expectations
▶ Consider marginal gambles M, the corresponding A, and some gamble f

▶ Lower expectation

E ∗(f ) := sup{α ∈ R : f − α ∈ E(A)}

= sup
{

α ∈ R : f − α ∈ (posi M + L⋗) ∪ L≥
}

= sup
{

α ∈ R : (f − α ⋗ h, h ∈ posi M) or f − α ≥ 0
}

= sup
{

α ∈ R : f − h ≥ α, h ∈ posi M ∪ {0}
}

= suph∈posi M∪{0} min(f − h) (linear optimization problem over a cone)

▶ Upper expectation

E ∗(f ) = infh∈posi M∪{0} max(f + h) (linear optimization problem over a cone)
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Natural extension to lower and upper expectations
▶ Consider marginal gambles M, the corresponding A, and some gamble f

▶ Lower expectation

E ∗(f ) := sup{α ∈ R : f − α ∈ E(A)}

= sup
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α ∈ R : f − α ∈ (posi M + L⋗) ∪ L≥
}

= sup
{
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}

= sup
{

α ∈ R : f − h ≥ α, h ∈ posi M ∪ {0}
}

= suph∈posi M∪{0} min(f − h) (linear optimization problem over a cone)

▶ Upper expectation

E ∗(f ) = infh∈posi M∪{0} max(f + h) (linear optimization problem over a cone)
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Natural extension to lower and upper expectations
▶ Consider marginal gambles M, the corresponding A, and some gamble f

▶ Lower expectation

E ∗(f ) := sup{α ∈ R : f − α ∈ E(A)}

= sup
{

α ∈ R : f − α ∈ (posi M + L⋗) ∪ L≥
}

= sup
{

α ∈ R : (f − α ⋗ h, h ∈ posi M) or f − α ≥ 0
}

= sup
{

α ∈ R : f − h ≥ α, h ∈ posi M ∪ {0}
}

= suph∈posi M∪{0} min(f − h) (linear optimization problem over a cone)

▶ Upper expectation

E ∗(f ) = infh∈posi M∪{0} max(f + h) (linear optimization problem over a cone)
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Natural extension to lower and upper expectations
▶ Consider marginal gambles M, the corresponding A, and some gamble f

▶ Lower expectation

E ∗(f ) := sup{α ∈ R : f − α ∈ E(A)}

= sup
{

α ∈ R : f − α ∈ (posi M + L⋗) ∪ L≥
}

= sup
{

α ∈ R : (f − α ⋗ h, h ∈ posi M) or f − α ≥ 0
}

= sup
{

α ∈ R : f − h ≥ α, h ∈ posi M ∪ {0}
}

= suph∈posi M∪{0} min(f − h) (linear optimization problem over a cone)

▶ Upper expectation
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Natural extension to lower and upper expectations
▶ Consider marginal gambles M, the corresponding A, and some gamble f

▶ Lower expectation

E ∗(f ) := sup{α ∈ R : f − α ∈ E(A)}

= sup
{

α ∈ R : f − α ∈ (posi M + L⋗) ∪ L≥
}

= sup
{

α ∈ R : (f − α ⋗ h, h ∈ posi M) or f − α ≥ 0
}

= sup
{

α ∈ R : f − h ≥ α, h ∈ posi M ∪ {0}
}

= suph∈posi M∪{0} min(f − h)

(linear optimization problem over a cone)

▶ Upper expectation
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Natural extension to lower and upper expectations
▶ Consider marginal gambles M, the corresponding A, and some gamble f

▶ Lower expectation

E ∗(f ) := sup{α ∈ R : f − α ∈ E(A)}

= sup
{

α ∈ R : f − α ∈ (posi M + L⋗) ∪ L≥
}

= sup
{

α ∈ R : (f − α ⋗ h, h ∈ posi M) or f − α ≥ 0
}

= sup
{

α ∈ R : f − h ≥ α, h ∈ posi M ∪ {0}
}

= suph∈posi M∪{0} min(f − h) (linear optimization problem over a cone)

▶ Upper expectation

E ∗(f ) = infh∈posi M∪{0} max(f + h) (linear optimization problem over a cone)
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Natural extension to lower and upper expectations
▶ Consider marginal gambles M, the corresponding A, and some gamble f

▶ Lower expectation

E ∗(f ) := sup{α ∈ R : f − α ∈ E(A)}

= sup
{

α ∈ R : f − α ∈ (posi M + L⋗) ∪ L≥
}

= sup
{

α ∈ R : (f − α ⋗ h, h ∈ posi M) or f − α ≥ 0
}

= sup
{

α ∈ R : f − h ≥ α, h ∈ posi M ∪ {0}
}

= suph∈posi M∪{0} min(f − h) (linear optimization problem over a cone)

▶ Upper expectation

E ∗(f ) = infh∈posi M∪{0} max(f + h) (linear optimization problem over a cone)
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Natural extension illustration

A B

O

E (f ) = −2/3
f = (1, 0, −1)

E (f ) = 1/4
f = (1, 0, −1)

E (g) = −1/13
g = (1, −1, 5

13 )

E (h) = −19/50
h = (−1, 1, − 13

25 )
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Natural extension illustration

A B

O

E (f ) = −2/3
f = (1, 0, −1)

E (f ) = 1/4
f = (1, 0, −1)

E (g) = −1/13
g = (1, −1, 5

13 )

E (h) = −19/50
h = (−1, 1, − 13

25 )

P∗({B}) = ?
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Natural extension illustration

A B

O

E (f ) = −2/3
f = (1, 0, −1)

E (f ) = 1/4
f = (1, 0, −1)

E (g) = −1/13
g = (1, −1, 5

13 )

E (h) = −19/50
h = (−1, 1, − 13

25 )

P∗({B}) = 1/2
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Basic setup and axioms
Basic setup of the theory of coherent interval expectations:
▶ Random variable X
▶ Set of outcomes X

▶ Set of functions F ⊆ (X → R)
▶ Each f ∈ F is assigned a lower or upper expectation

value, leading to a set of marginal gambles M
Axioms
The lower and upper expectation operators E and E must

Avoid sure loss The assessment A corresponding to M must avoid sure loss:

Be coherent The natural extension is identical to the specified expectation for all
gambles f ∈ F (worked-out for lower expectation):
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Basic setup and axioms
Basic setup of the theory of coherent interval expectations:
▶ Random variable X
▶ Set of outcomes X

▶ Set of functions F ⊆ (X → R)
▶ Each f ∈ F is assigned a lower or upper expectation

value, leading to a set of marginal gambles M
Axioms
The lower and upper expectation operators E and E must
Avoid sure loss The assessment A corresponding to M must avoid sure loss:

infh∈posi M max h ≥ 0

Be coherent The natural extension is identical to the specified expectation for all
gambles f ∈ F (worked-out for lower expectation):
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Basic setup and axioms
Basic setup of the theory of coherent interval expectations:
▶ Random variable X
▶ Set of outcomes X

▶ Set of functions F ⊆ (X → R)
▶ Each f ∈ F is assigned a lower or upper expectation

value, leading to a set of marginal gambles M
Axioms
The lower and upper expectation operators E and E must
Avoid sure loss The assessment A corresponding to M must avoid sure loss:

infh∈posi M max h ≥ 0

Be coherent The natural extension is identical to the specified expectation for all
gambles f ∈ F (worked-out for lower expectation):

E (f ) = E ∗(f )
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Basic setup and axioms
Basic setup of the theory of coherent interval expectations:
▶ Random variable X
▶ Set of outcomes X

▶ Set of functions F ⊆ (X → R)
▶ Each f ∈ F is assigned a lower or upper expectation

value, leading to a set of marginal gambles M
Axioms
The lower and upper expectation operators E and E must
Avoid sure loss The assessment A corresponding to M must avoid sure loss:

infh∈posi M max h ≥ 0

Be coherent The natural extension is identical to the specified expectation for all
gambles f ∈ F (worked-out for lower expectation):

E (f ) ≥ suph∈posi M∪{0} min(f − h)
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Basic setup and axioms
Basic setup of the theory of coherent interval expectations:
▶ Random variable X
▶ Set of outcomes X

▶ Set of functions F ⊆ (X → R)
▶ Each f ∈ F is assigned a lower or upper expectation

value, leading to a set of marginal gambles M
Axioms
The lower and upper expectation operators E and E must
Avoid sure loss The assessment A corresponding to M must avoid sure loss:

infh∈posi M max h ≥ 0

Be coherent The natural extension is identical to the specified expectation for all
gambles f ∈ F (worked-out for lower expectation):

infh∈posi M∪{0} max(h − (f − E (f ))) ≥ 0
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Special types of lower expectations

▶ The vacuous lower expectation ES relative to some
event S ⊆ X is defined by ES(f ) := minx∈S f (x)
and expresses that X ∈ S and nothing more

▶ The vacuous lower expectation EX

expresses complete ignorance

▶ The linear expectation Ep corresponding to some
pmf p is also a coherent lower expectation

▶ The linear-vacuous lower expectation Ep,ε is as well:

Ep,ε(f ) := (1 − ε)Ep(f ) + ε min
x∈X

f (x)
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Some properties of coherent lower and upper expectations

Conjugacy E (f ) = −E (−f )
Boundedness minx∈X f (x) ≤ E (f ) ≤ E (f ) ≤ maxx∈X f (x)
Positive homogeneity E (λf ) = λE (f ) for all λ > 0

Monotonicity if f ≤ g then E (f ) ≤ E (g)
Constant additivity E (f + µ1X ) = E (f ) + µ for all µ ∈ R

Mixed super/sub-linearity

E (f ) + E (g) ≤ E (f + g) ≤ E (f ) + E (g) ≤ E (f + g) ≤ E (f ) + E (g)

Convex mixtures if E 1 and E 2 are coherent, then so is εE 1 + (1 − ε)E 2 for all 0 ≤ ε ≤ 1
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Some properties of coherent lower and upper expectations
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Boundedness minx∈X f (x) ≤ E (f ) ≤ E (f ) ≤ maxx∈X f (x)
Positive homogeneity E (λf ) = λE (f ) for all λ > 0

Monotonicity if f ≤ g then E (f ) ≤ E (g)
Constant additivity E (f + µ1X ) = E (f ) + µ for all µ ∈ R

Mixed super/sub-linearity
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Lower expectations on linear function spaces

If F is a linear space (f , g ∈ F then af + bg ∈ F for all a, b ∈ R)
then the axioms simplify:

Boundedness E (f ) ≥ minx∈X f (x) for all f ∈ F

Positive homogeneity E (λf ) = λE (f ) for all f ∈ F and λ > 0

Super-linearity E (f + g) ≥ E (f ) + E (g) for all f , g ∈ F
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Lower envelopes
▶ Let Γ be some index set
▶ Consider a set {Eγ : γ ∈ Γ} of coherent lower expectations on F
▶ Then its lower envelope E defined by E (f ) := infγ∈Γ Eγ(f ) on F is coherent

Lower envelopes of credal sets
▶ Let C be a non-empty credal set
▶ Then the lower envelope EC defined by EC(f ) := infp∈C Ep(f ) is coherent

Credal sets from lower expectations
▶ Let E be a lower expectation on F avoiding sure loss
▶ Then the credal set CE := {p ∈ PX : Ep(f ) ≥ E (f ) for all f ∈ F} is non-empty
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Lower envelopes
▶ Let Γ be some index set
▶ Consider a set {Eγ : γ ∈ Γ} of coherent lower expectations on F
▶ Then its lower envelope E defined by E (f ) := infγ∈Γ Eγ(f ) on F is coherent
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The categorical prediction task
What is the color of the next ball to be drawn from an urn?

Setup
▶ Outcome space X (of ball colors: Red, Green, Black, White,. . . )
▶ We have n ∈ N observations x = (x1, . . . , xn)

(sequence of colors of previous balls drawn)
▶ Draw inferences for or make decisions related to the next observation Xn+1

(color of next ball drawn)

Exchangeability assumption
▶ The order of the observations is irrelevant

(inferences should remain the same when (R, G, R) or (R, R, G) has been observed)
▶ Observed occurrence vector n ∈ NX with nz :=

∑n
k=1 δzxk and nS :=

∑
x∈S nx

(if x = (R, G, R, W) then nR = 2, nG = 1, nW = 1, and n¬W = 3)
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Learning lower expectations for categorical prediction
Idea
Add epistemic uncertainty using s > 0 pseudo-observations (of unknown color)
and predict according to the ‘observed’ frequency

Predictive inference
▶ Event prediction: Ps(S|n) = nS

s+n and Ps(S|n) = s+nS
s+n

▶ Lower expectation for f ∈ L:

E s(f |n) = n
s+nEp(f ) + s

s+n minx∈X f (x) with px := nx
n
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Learning lower expectations for categorical prediction
Idea
Add epistemic uncertainty using s > 0 pseudo-observations (of unknown color)
and predict according to the ‘observed’ frequency

Predictive inference
▶ Outcome prediction: Ps({x}|n) = nx

s+n and Ps({x}|n) = s+nx
s+n

▶ Lower expectation for f ∈ L:

E s(f |n) = n
s+nEp(f ) + s

s+n minx∈X f (x) with px := nx
n
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Learning lower expectations for categorical prediction
Idea
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Learning lower expectations for categorical prediction
Idea
Add epistemic uncertainty using s > 0 pseudo-observations (of unknown color)
and predict according to the ‘observed’ frequency

Predictive inference
▶ Event prediction: Ps(S|n) = nS

s+n and Ps(S|n) = s+nS
s+n

▶ Lower expectation for f ∈ L:

E s(f |n) = n
s+nEp(f ) + s
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Learning lower expectations for categorical prediction
Idea
Add epistemic uncertainty using s > 0 pseudo-observations (of unknown color)
and predict according to the ‘observed’ frequency

Predictive inference
▶ Event prediction: Ps(S|n) = nS

s+n and Ps(S|n) = s+nS
s+n

▶ Lower expectation for f ∈ L:

E s(f |n) = n
s+nEp(f ) + s

s+n minx∈X f (x) with px := nx
n

Properties of E s(·|n)
▶ linear-vacuous model; vacuous for n = 0; more precise with more observations
▶ does not depend on a specific categorization X
▶ immediate prediction model of the imprecise Dirichlet-multinomial model ID(M)M
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Learning lower expectations for categorical prediction
Idea
Add epistemic uncertainty using s > 0 pseudo-observations (of unknown color)
and predict according to the ‘observed’ frequency

Predictive inference
▶ Event prediction: Ps(S|n) = nS

s+n and Ps(S|n) = s+nS
s+n

▶ Lower expectation for f ∈ L:

E s(f |n) = n
s+nEp(f ) + s

s+n minx∈X f (x) with px := nx
n

Example setup
▶ x = (R, G, R, W, W)
▶ s = 2

Inferences
▶ P2({B, W }|n) = ?
▶ P2({B, W }|n) = ?



Interval expectation & probability Learning — creating a representation 307 / 326

Learning lower expectations for categorical prediction
Idea
Add epistemic uncertainty using s > 0 pseudo-observations (of unknown color)
and predict according to the ‘observed’ frequency

Predictive inference
▶ Event prediction: Ps(S|n) = nS

s+n and Ps(S|n) = s+nS
s+n

▶ Lower expectation for f ∈ L:

E s(f |n) = n
s+nEp(f ) + s

s+n minx∈X f (x) with px := nx
n

Example setup
▶ x = (R, G, R, W, W)
▶ s = 2

Inferences
▶ P2({B, W }|n) = 2/7
▶ P2({B, W }|n) = 4/7
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Multivariate interval expectation: basic setup & basic idea

▶ Index set N = {1, . . . , n}

▶ Multivariate variable X = (X1, X2, . . . , Xn)

▶ Set of possible outcomes x ∈ X = X1 × X2 × . . . × Xn

▶ A joint lower expectation EX is specified on some set of functions F ⊆ L

Formulate an appropriate function on L
whose lower expectation provides the desired inference;
calculate the lower expectation using natural extension
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Marginal lower expectations

▶ A marginal lower expectation is defined for a subset of the random variables

▶ Let K ⊆ N, then
▶ XK := (Xk : k ∈ K ) and xK ∈ XK :=×k∈K Xk

▶ Notation: EXK is the XK -marginal of the joint lower expectation EX

▶ The marginal lower expectation for f ∈ LK is obtained
by calculating the joint natural extension of its cylindrical extension:

EXK (f ) := EX
∗ (↑XN\K f ) where (↑XN\K f )(x) := f (xK )
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Marginal lower expectations

▶ A marginal lower expectation is defined for a subset of the random variables

▶ Let K ⊆ N, then
▶ XK := (Xk : k ∈ K ) and xK ∈ XK :=×k∈K Xk

▶ Notation: EXK is the XK -marginal of the joint lower expectation EX

▶ The marginal lower expectation for f ∈ LK is obtained
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∗ (↑XN\K f ) where (↑XN\K f )(x) := f (xK )
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Marginal lower expectation example
Example setup
▶ Two random variables X1 and X2

with outcome spaces X1 = {0, 1} and X2 = {−, +}
▶ Joint lower expectation EX := Ep,ε

with ε unspecified and p given on the right
(in black), together with its marginals (in green)

p 0 1 pX2

− 3/9 1/9 4/9
+ 2/9 3/9 5/9

pX1 5/9 4/9

Inference
Marginal lower expectation EX1

Solution Ep,ε(↑X2 f ) = (1 − ε)Ep(↑X2 f ) + ε min
x∈X

(↑X2 f )(x1, x2)

= (1 − ε)EpX1 (f ) + ε min
x1∈X1

f (x1)

= EpX1 ,ε(f )
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Conditional lower expectations
▶ A conditional lower expectation is determined by

▶ assuming some event is known to be true, or specifically
▶ assuming some random variables take some given values: XK = xK , with K ⊂ N

▶ Notation: EXN\K (·|XK = xK ) is the XN\K -conditional
of the joint lower expectation EX

▶ The conditional lower expectation for f ∈ LN\K is
the maximum acceptable buying price for the corresponding called-off gamble:

EXN\K (f |XK = xK ) := max
{

α ∈ R : EX
∗

(
↑XK (f − α · 1XN\K ) · 1XK =xK

)
≥ 0

}
if P(XK = xK ) > 0, otherwise EXN\K (·|XK = xK ) := EXN\K

This is called conditioning by natural extension or the generalized Bayes’s rule
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Conditional lower expectations
▶ A conditional lower expectation is determined by

▶ assuming some event is known to be true, or specifically
▶ assuming some random variables take some given values: XK = xK , with K ⊂ N

▶ Notation: EXN\K (·|XK = xK ) is the XN\K -conditional
of the joint lower expectation EX

▶ The conditional lower expectation for f ∈ LN\K is
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Conditional lower expectation example

Example setup
▶ Two random variables X1 and X2

with outcome spaces X1 = {0, 1} and X2 = {−, +}
▶ Joint lower expectation EX := Ep,ε with

ε unspecified and p given on the right (in black),
together with its marginals (in green)

p 0 1 pX2

− 3/9 1/9 4/9
+ 2/9 3/9 5/9

pX1 5/9 4/9

Inference
Conditional lower expectation EX1(·|X2 = +)

Solution (start)
EX1(f |X2 = +) = max

{
α ∈ R : Ep,ε

(
↑X2 (f − α · 1X1) · 1X2=+

)
≥ 0

}



Interval expectation & probability Multivariate lower expectations 317 / 326

Conditional lower expectations example
Solution (continuation)
EX1(f |X2 = +) = max

{
α ∈ R : Ep,ε

(
↑X2 (f − α · 1X1) · 1X2=+

)
≥ 0

}

= max
{

α ∈ R : (1 − ε)Ep
(
↑X2 (f − α · 1X1) · 1X2=+

)
+ ε min

x∈X

(
f (x1) − α

)
· 1X2=+(x2) ≥ 0

}
= max

{
α ≥ min

x1∈X1
f (x1) : (1 − ε)

∑
x1∈X1

p(x1,+)
(
f (x1) − α

)
+ ε min

x1∈X1

(
f (x1) − α

)
≥ 0

}
= max

{
α ≥ min

x1∈X1
f (x1) : (1 − ε)5

9
∑

x1∈X1

pX1|+
x1

(
f (x1) − α

)
+ ε

(
min

x1∈X1
f (x1) − α

)
≥ 0

}
= max

{
α ≥ min

x1∈X1
f (x1) : α ≤ (1 − δ)EpX1|+(f ) + δ min

x1∈X1
f (x1)

}

= EpX1|+,δ(f )

with δ = ε

(1 − ε)5
9 + ε
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Conditional lower expectations example
Solution (continuation)
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)
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9
∑
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}
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Conditional lower expectations example
Solution (continuation)
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Conditional lower expectations example
Solution (continuation)
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Epistemic irrelevance & Epistemic independence

Consider X = (X1, X2) and a joint lower expectation EX on (X → R)

Epistemic irrelevance
▶ X2 is epistemically irrelevant to X1 iff EX1(·|X2 = x2) := EX1 for all x2 ∈ X2
▶ Epistemic irrelevance of X2 to X1 does not imply epistemic irrelevance of X1 to X2

Epistemic independence
X1 and X2 are called epistemically independent iff
▶ X2 is epistemically irrelevant to X1
▶ X1 is epistemically irrelevant to X2
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Epistemically independent natural extension

Setup
▶ Consider two random variables X1 and X2
▶ Marginal lower expectations EX1 on F1 ⊆ L1 and EX2 on F2 ⊆ L2

Natural extension of epistemically independent marginals
▶ Creating a joint lower expectation from epistemically independent marginals

is not done as typically with a product

▶ Natural extension of the implied assessment is used:

EX(f ) =
(
EX1 ⊠ EX2

)
(f ) := sup

g1,g2∈L
min
x∈X

(
f (x) −

(
g1(x) − EX1

∗
(
g1(X1, x2)

))
−

(
g2(x) − EX2

∗
(
g2(x1, X2)

)))
for all f ∈ L
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