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https://theconversation.com/
offshore-wind-farms-connected-by-an-underwater-power-grid-for-transmission-could-revolutionize-how-the-east-coast-gets-its-electricity-230532

5

https://theconversation.com/offshore-wind-farms-connected-by-an-underwater-power-grid-for-transmission-could-revolutionize-how-the-east-coast-gets-its-electricity-230532
https://theconversation.com/offshore-wind-farms-connected-by-an-underwater-power-grid-for-transmission-could-revolutionize-how-the-east-coast-gets-its-electricity-230532


https://www.reuters.com/business/energy/
japan-collaborate-with-us-cutting-floating-offshore-wind-costs-2024-04-11/
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What is Decision Making: Offshore Wind Example
Operations & Maintenance of Offshore Wind
30% of cost of offshore wind is operations & maintenance
= huge chunk of money

Types of Maintenance
▶ preventive (prevent future failures)
▶ corrective (fix after failure)
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What is Decision Making: Offshore Wind Example

Decisions
criterion: minimize cost
▶ when to perform maintenance?
▶ what is a good preventive/corrective balance?

limiting factor = wind speed & wave height for boarding

Uncertainties
Enormous potential for saving costs by making accurate predictions of:
▶ wind & waves at different time scales

avoid missing maintenance opportunities
avoid costly transport when turbine cannot be boarded

▶ forecast failures before they happen
cost of preventing ≪ cost of fixing
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What is Decision Making: Offshore Wind Example

drastically different issues at different time scales:

Short Term: Optimize Actual Operations
what data on the wind farm should we collect
how to use it?

Medium Term: Business Case
how to convince investors to invest in offshore wind
may not have very much data to go from!

Long Term: Policy & Politics
should we encourage offshore, or look at other technologies?
very little data to go by, enormous uncertainty concerning future
climate change, attitude of electorate, etc.
not just about money
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What is Decision Making: Offshore Wind Example

Why Use Bounded Probability for Decision Making?
▶ increases confidence in analysis based on sparse data

may help at all levels/time horizons
▶ risk-averse industries: rare events with large impact

Why NOT Use Bounded Probability for Decision Making?
▶ computational expense
▶ abundant data, non-critical decisions

standard statistical treatment works as well

Communication!
how to communicate uncertainty?
uncertainty analysis only useful if results can be communicated
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Review of Classical Decision Theory: Example
Example: Visit Offshore Turbine by Boat in the Next Hour?

▶ parameter: average wave height X for next hour: unknown!
assume only possible values are x = 0.5 and x = 2

▶ data: observation Y , say average wave height in last hour
assume only possible values are y = 0.5 and y = 2

▶ decision: d = take boat, or d = do not take boat
▶ decision strategy δ:

which decision to make based on data y?
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Review of Classical Decision Theory: Example
Example: Visit Offshore Turbine by Boat in the Next Hour?

▶ utility function U(d , x): each combination of decision & parameter leads to a
different final reward value
▶ can only board offshore turbine for maintenance if X < 1
▶ taking boat costs €1000
▶ doing maintenance saves €4000

for example, expressed in units of €1000:
U(d , x) x = 0.5 x = 2
d = boat 3 −1

d = no boat 0 0
▶ likelihood: probability of data given parameter p(y |x)

p(y |x) y = 0.5 y = 2
x = 0.5 0.9 0.1
x = 2 0.3 0.7

▶ prior: probability of parameter p(x) before you see the data
p(x) x = 0.5 x = 2

0.4 0.6 14



Review of Classical Decision Theory: Example
Frequentist Solution: Wald’s Expected Utility, Admissibility

frequentist = use likelihood

1. for every possible strategy δ
and for every possible value x of X
calculate Wald’s expected utility expected utility = −risk

U(δ|x) := E (U(δ(Y ), x)|x) =
∑
y

U(δ(y), x)p(y |x) (1)

2. a strategy δ is inadmissible if there is a strategy δ′ such that
U(δ′|x) ≥ U(δ|x) for all x , and
U(δ′|x) > U(δ|x) for at least one x partial ordering of strategies

3. optimal Wald strategy
all admissible strategies maximal elements w.r.t. partial ordering
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Review of Classical Decision Theory: Example
Bayesian Solution: Maximize Posterior Expected Utility

Bayesian = use posterior (∝ likelihood × prior)

1. calculate the posterior

p(x |y) = p(y |x)p(x)∑
x ′ p(y |x ′)p(x ′)

(2)

2. for every possible observation y
and every possible decision d
calculate the posterior expected utility:

U(d |y) = E (U(d ,X )|y) =
∑
x

U(d , x)p(x |y) (3)

3. optimal Bayes strategy δ∗: max posterior expected utility

δ∗(y) = argmax
d

U(d |y) (4)

much easier to calculate than Wald’s admissible strategies! (why?)
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Review of Classical Decision Theory: Wald’s Theorem
Wald’s Theorem (1939 [15])
The set of Wald admissible strategies can always be recovered from a Bayesian analysis,
simply by varying the prior over all possible distributions.

[Technical details omitted!]

‘equivalence’ of robust Bayesian statistics︸ ︷︷ ︸
sets of priors

and frequentist statistics

Demonstration of Wald’s Theorem
https://colab.research.google.com/github/mcmtroffaes/
sipta-school-2024-decision-notebooks/blob/main/
01-classical-decision-theory.ipynb

Plan
▶ develop decision making directly from sets of distributions
▶ look at some practical examples
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Robust Decision Making: Aim & Assumptions

Can we develop a decision theory based on only partial knowledge of probabilities?

Simple setting:
▶ Set M of probability mass functions on Ω.
▶ Consider gambles as functions on Ω (random reward expressed in a utility scale).
▶ How should we choose among gambles?
▶ Notation:

Ep(X ) :=
∑
ω∈Ω

p(ω)X (ω) for any p ∈ M (5)

E (X ) := min
p∈M

Ep(X ) E (X ) := max
p∈M

Ep(X ) lower & upper expectation (6)
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A Very Simple Example

Example (Machinery, Overtime, or Nothing?)
A company makes a product, and believes in increasing future demand. The manager asks you,
the decision expert, whether he should buy new machinery, use overtime, or do nothing. The
upcoming year, demand can either increase or remain the same.
If we buy new machinery, then the profit at the end of the year will be 440 (in thousands of
pounds) if demand increases, and 260 otherwise. Alternatively, if we use overtime, then the
profit will be 420 if demand increases, and 300 otherwise. If we do nothing, profit will be 370.
According to our best current judgement, demand will increase with probability at least 0.5,
and at most 0.8:

M =

p1 p2

increase 0.5 0.8
stay 0.5 0.2

(each column is a probability mass function)

What advice can we give the manager?
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A Very Simple Example: Choice

set of
decisions

machinery
overtime
nothing

set of
gambles

increase stay
440 260
420 300
370 370

choice
function

set of
optimal
gambles

increase stay
420 300
370 370

set of
optimal
decisions

overtime
nothing

each row is a gamble

what is a good choice function,
under severe uncertainty?
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Γ-Maximin
(Wald 1945 [16], Gilboa & Schmeidler 1989 [5])

Definition (Γ-Maximin Optimality Criterion)
Choose any gamble whose lower expectation is maximal.

Recipe (Γ-Maximin Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. calculate minimum expectation of each gamble minimum of each row

4. choose decision with highest minimum expectation maximize

argmax
d∈D

E (Xd) (7)
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Γ-Maximin: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 E

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2) (3) & (4)
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Γ-Maximax
(Satia and Lave 1973 [9], probably others as well)
▶ Γ-maximin seems overly pessimistic; something more optimistic?

Definition (Γ-Maximax Optimality Criterion)
Choose any gamble whose upper expectation is maximal.

Recipe (Γ-Maximax Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. calculate maximum expectation of each gamble maximum of each row

4. choose decision with highest maximum expectation maximize

argmax
d∈D

E (Xd) (8)
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Γ-Maximax: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 E

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260 350 404
overtime 420 300 360 396
nothing 370 370 370 370

(1) (2) (3) & (4)
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Break (10:00am)
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Interval Maximality (10:15am) literature: ‘interval dominance’

(Condorcet 1785 [4], Sen 1977 [12], Satia and Lave 1973 [9], Kyburg 1983 [6], many
others)
▶ get all reasonable options (from pessimistic to optimistic) at once?

Definition (Partial Ordering by Interval Comparison)
We say that a gamble X interval dominates Y , and write

X ⊐ Y (9)

whenever
E (X ) > E (Y ) (10)

[E(X ),E(X )] dominates [E(Y ),E(Y )]

Definition (Interval Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to ⊐.

{d : (∀e ∈ D)(Xd ̸⊏ Xe)} (11)
30



Interval Maximality: Partial Ordering
⊏ determines a partial ordering between gambles

E (Xd) E (Xd)

E (Xe)E (Xe)

Xd ⊏ Xe

E (Xd) E (Xd)

E (Xe) E (Xe)

incomparable

E (Xd) E (Xd)

E (Xe)E (Xe)

Xd ⊐ Xe

E (Xd) E (Xd)

E (Xe) E (Xe)

incomparable
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Interval Maximality: Hasse Diagram & Algorithm
maximal elements with partial ordering = undominated elements

example:

6
5
4
3
2
1

Hasse diagram

1 2 3

4

5

6

Theorem
All non-interval-maximal elements are dominated by the interval that has the highest
lower bound.
=⇒ no need for Hasse diagram to find interval maximal elements
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Interval Maximality: Practical Implementation

Recipe (Interval Maximality Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. calculate minimum and maximum expectation of each gamble
= interval expectation minimum & maximum of each row

4. choose the decisions whose maximum expectation
exceeds the overall largest minimum expectation undominated intervals

{
d : E (Xd) ≥ max

e∈D
E (Xe)

}
(12)
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Interval Maximality: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 E E

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260 350 404
overtime 420 300 360 396
nothing 370 370 370 370

(1) (2) (3) & (4)
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Robust Bayes Maximality literature: ‘maximality’

(Condorcet 1785 [4], Sen 1977 [12], Walley 1991 [17], Seidenfeld 1995 [11])
▶ exploits the behavioural interpretation of lower previsions
▶ refines interval maximality (see Exercise 3 later!)

Definition (Partial Ordering by Robust Bayesian Comparison)
We say that X robust Bayes dominates Y , and write

X ≻ Y (13)

whenever any of the following equivalent conditions hold:

(∀p ∈ M) (Ep(X ) > Ep(Y )) (14)
E (X − Y ) > 0 (15)

(willing to pay a small amount in order to trade Y for X )
(X − Y + ϵ is desirable for some ϵ > 0)
Remember, for any probability mass function p and any gamble X : Ep(X ) :=

∑
ω∈Ω p(ω)X (ω)
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Robust Bayes Maximality: Hasse Diagram & Algorithm
Definition (Robust Bayes Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to ≻.
example:

Ep1 Ep2 Ep3

X1 1 0 −1
X2 0 0 0
X3 0.5 −1 −2
X4 0.2 −2 −3
X5 2 1 −0.5

Hasse diagram

1

2

3

4

5

Maximality

1

2

3

4

5

for browny points: interval maximal gambles?

Theorem
Every non-maximal element is dominated by a maximal element.

holds for arbitrary partial orderings!

=⇒ no need for Hasse diagram to find maximal elements:
once non-maximal element removed, no need to consider further!
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X2 0 0 0
X5 2 1 −0.5

Hasse diagram

1 2

3

4

5
Maximality

1 2

3

4

5

for browny points: interval maximal gambles?

Theorem
Every non-maximal element is dominated by a maximal element.

holds for arbitrary partial orderings!

=⇒ no need for Hasse diagram to find maximal elements:
once non-maximal element removed, no need to consider further! 36



Robust Bayes Maximality: Hasse Diagram & Algorithm
Definition (Robust Bayes Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to ≻.
example:

Ep1 Ep2 Ep3

X2 0 0 0
X5 2 1 −0.5

Hasse diagram

1 2

3

4

5
Maximality

1 2

3

4

5

for browny points: interval maximal gambles?

Theorem
Every non-maximal element is dominated by a maximal element.

holds for arbitrary partial orderings!

=⇒ no need for Hasse diagram to find maximal elements:
once non-maximal element removed, no need to consider further! 36



Robust Bayes Maximality: Practical Implementation

Recipe (Robust Bayes Maximality Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. sequentially remove all decisions
whose expectation rows are point-wise dominated
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Robust Bayes Maximality: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260 350 404
overtime 420 300 360 396
nothing 370 370 370 370

(1) (2)

38



Robust Bayes Admissibility literature: ‘E-admissibility’

(Pascal 1662 [8], Levi 1980 [7], Berger 1984 [2], Walley 1991 [17], Seidenfeld 2007
[10])
▶ refines robust Bayes maximality

Definition (Robust Bayes Admissibility Optimality Criterion)
Choose any gamble which maximizes expectation with respect to some p ∈ M.
example:

Ep1 Ep2 Ep3

X1 1 0 −1
X2 0 0 0
X3 0.5 −1 −2
X4 0.2 −2 −3
X5 2 1 −0.5

notes:
▶ computational challenge if M is large
▶ not invariant under convex hull operation: not enough to look at extreme points
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Robust Bayes Admissibility literature: ‘E-admissibility’

(Pascal 1662 [8], Levi 1980 [7], Berger 1984 [2], Walley 1991 [17], Seidenfeld 2007
[10])
▶ refines robust Bayes maximality

Definition (Robust Bayes Admissibility Optimality Criterion)
Choose any gamble which maximizes expectation with respect to some p ∈ M.
example:

Ep1 Ep2 Ep3

X1 1 0 −1
X2 0 0 0
X3 0.5 −1 −2
X4 0.2 −2 −3
X5 2 1 −0.5

notes:
▶ computational challenge if M is large
▶ not invariant under convex hull operation: not enough to look at extreme points
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Robust Bayes Admissibility: Practical Implementation

Recipe (Robust Bayes Admissibility Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. take all decisions that achieve a maximum
in some expectation column
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Robust Bayes Admissibility: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260 350 404
overtime 420 300 360 396
nothing 370 370 370 370

(1) (2) & (3)
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Robust Bayes Admissibility: Extreme Points Issue

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 p3

increase 0.5 0.8 0.65
stay 0.5 0.2 0.35

machinery 440 260 350 404 377
overtime 420 300 360 396 378
nothing 370 370 370 370 370
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Lunch (12:30pm)
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Exercises

▶ Visit https:
//github.com/mcmtroffaes/sipta-school-2024-decision-notebooks

▶ Click on the google colab link in the readme on the bottom of the page.
▶ Complete any exercises from the first two notebooks (classical decision theory,

robust decision making).
▶ It is advised to make a copy of the notebooks in google so that you can save your

work.
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Credal Classification: What is Classification?
▶ actual class c (unknown), attributes a1, . . . , ak
▶ decided class d
▶ U(d , c) utility for deciding class is d if real class is c

typical choice: U(d , c) = 1 if d = c and U(d , c) = 0 if d ̸= c
▶ aim: choose the best class given attributes

d∗ = argmax
d

∑
c

U(d , c)p(c |a) (16)

= argmax
c

p(c |a) = argmax
c

p(c , a)/p(a) (17)

= argmax
c

p(c , a) (18)

Open issues:
▶ How do we estimate the probabilities?
▶ Dealing with scarce data?
▶ Dealing with missing data?
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Credal Classification: The Naive Bayes Classifier
Naive Bayes Classifier
Assume attributes are independent conditional on class:

p(c , a) = p(c)p(a|c) = p(c)
k∏

i=1

p(ai |c) (19)

Estimation of p(c) and p(ai |c)?
▶ maximum likelihood:

p(c) = n(c)
N p(ai |c) = n(ai ,c)

n(c) (20)

▶ Bayesian estimate with Dirichlet prior and hyperparameters t:

pt(c) =
n(c)+st(c)

N+s pt(ai |c) = n(ai ,c)+st(ai ,c)
n(c)+st(c) (21)

(where
∑

c t(c) = 1,
∑

ai
t(ai , c) = t(c), t(c) > 0, and t(ai , c) > 0)
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Credal Classification: The Naive Credal Classifier

Estimation of p(c) and p(ai |c)?
▶ robust Bayesian estimate with imprecise Dirichlet model:

as with Bayesian estimate but with
sensitivity analysis over all possible t(c) and t(ai , c)

▶ Bounds for probabilities/expected utilities via optimisation.
▶ Use any of the decision criteria we discussed (interval dominance, robust Bayes

maximality, robust Bayes admissibility, . . . )

Case that we will study here:
▶ Simple approximate probability intervals.
▶ Interval dominance criterion.
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Credal Classification: The Naive Credal Classifier
Bounds

p(c , a) = inf
t
pt(c , a) = inf

t

n(c) + st(c)

N + s

k∏
i=1

n(ai , c) + st(ai , c)

n(c) + st(c)
(22)

≥ n(c)

N + s︸ ︷︷ ︸
p(c)

k∏
i=1

n(ai , c)

n(c) + s︸ ︷︷ ︸
p(ai |c)

(23)

p(c , a) = sup
t

pt(c , a) = sup
t

n(c) + st(c)

N + s

k∏
i=1

n(ai , c) + st(ai , c)

n(c) + st(c)
(24)

≤ n(c) + s

N + s︸ ︷︷ ︸
p(c)

k∏
i=1

n(ai , c) + s

n(c) + s︸ ︷︷ ︸
p(ai |c)

(25)
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Credal Classification: The Naive Credal Classifier

Interval Dominance
Consider the set of all classes c for which

p(c)
k∏

i=1

p(ai |c) ≥ max
c ′

p(c ′)
k∏

i=1

p(ai |c ′) (26)

classifier can return multiple classes if it is unsure about the probabilities!

Credal Classification
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Credal Classification: Model Diagnostics

Cross Validation
▶ divide entire data set into two parts (not necessarily equal in size):

training data & test data
▶ use training data to create the model (i.e. lower and upper probabilities)
▶ classify every item in the test data, and calculate a diagnostic (discrepancy,

predictive ability, . . . )
▶ average out the diagnostic

k-Fold Cross Validation
▶ divide entire data set into k equal parts
▶ do cross validation k times

each time using k ’th part as test data and remaining parts as training data
▶ average out diagnostics across all k runs
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Credal Classification: Diagnostics [3]
▶ c = actual class
▶ ĉ = set of predicted classes

name value condition
accuracy 1 c ∈ ĉ

0 c /∈ ĉ

single accuracy 1 |ĉ| = 1 and {c} = ĉ
0 |ĉ| = 1 and {c} ≠ ĉ
NA otherwise

set accuracy 1 |ĉ| ≥ 2 and c ∈ ĉ
0 |ĉ| ≥ 2 and c /∈ ĉ
NA otherwise

indeterminate output size |ĉ | |ĉ| ≥ 2
NA otherwise

determinacy 1 |ĉ| = 1
0 |ĉ| ≥ 2
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Breast Cancer Case Study: Introduction

▶ data publicly available from
http://archive.ics.uci.edu/ml/datasets/mammographic+mass

▶ issue: low predictive power of expert mammogram interpretation (BI-RADS)
▶ solution: use computer image analysis! can we quantify value of such automation?

Data: 830 patients, 6 attributes

1 expert assessment (BI-RADS): 1 to 6
2 patient age (discretized): 0+, 45+, 55+, or 75+
– image features:

3 shape: 1 to 4
4 margin: 1 to 5
5 density: 1 to 4

6 severity (actual cancer or not): 0 or 1

55

http://archive.ics.uci.edu/ml/datasets/mammographic+mass


Breast Cancer Case Study: Exercises

▶ Visit https:
//github.com/mcmtroffaes/sipta-school-2024-decision-notebooks

▶ Click on the google colab link in the readme on the bottom of the page.
▶ Complete any exercises from the third notebook (credal classification).
▶ It is advised to make a copy of the notebook in google so that you can save your

work.
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