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I.  =  
(~10 minutes of precise Probability)

P P

Alessandro Antonucci, IDSIA



(Precise) Probability Theory (in One Slide)

I. P(X)Alessandro Antonucci, IDSIA

•  takes its values in  , generic value  

• We (initially) focus on categorical variables, i.e.,  

• Uncertainty about  by a probability mass function (PMF)  

– PMF  ,   ,  

– Expectation of ?  

• Joint PMF  (two or more variables) 

– Marginalisation,  s.t.  

– Conditioning,  s.t.  if 

X ΩX x ∈ ΩX

|ΩX | < + inf
X P

P : ΩX → ℝ P(x) ≥ 0 ∀x ∈ ΩX ∑
x∈ΩX

P(x) = 1

f : ΩX → ℝ 𝔼[ f ] = ∑
x∈ΩX

P(x) ⋅ f (x)

P(X, Y )
P(X ) P(x) = ∑

y∈ΩY

P(x, y)

P(X |y) P(x |y) =
P(x, y)
P(y)

=
P(x, y)

∑x∈ΩX
P(x, y)

P(y) > 0



(First) Python Exercise
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• Go to GDrive 

• Install Colaboratory as an extension 

• Create a notebook & install a package 

• My notebooks in Github and GDrive 

• Our Notebook #1 

– Learn  

– Marginalise gender  to get  

– Conditioning, e.g., recovery 
probability given treatment > or < 
than given no treatment?

n(X, Y, Z) → P(X, Y, Z)
Z P(X, Y )

I. P(X)

https://colab.research.google.com/drive/179nYVDivRewVDGo4TFK_8mBVdluNx-Zm?usp=sharing


II. AI  DL 
AI is (not only) Deep Learning

≠
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Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA)

• Research Institute founded in 1988 in 
Lugano to promote AI for quality of life 

• Affiliated with both University of Lugano 
(USI) and University of Applied Sciences 
and Arts of Southern Switzerland (SUPSI) 

• Staff ~100 people + 50 PhD 

• Isipta '03&'17 + School '04  @Lugano

Alessandro Antonucci, IDSIA

Angelo Dalle Molle (1908 - 2002)

II. AI  DL≠

https://www.idsia.usi-supsi.ch
http://www.apple.com/uk


AI is the new "electricity"?

• “About 100 years ago, electricity transformed 
every major industry. AI has advanced to the 
point where it has the power to transform every 
major sector in coming years.”  Andrew Ng 

• Recent (Deep Learning) Breakthroughs 
– Image Recognition (Super-Human) (~2015) 

– Translation (Near-Human) (~2016) 

– Go World-Champion Challenge (2017) 

– Protein Structure Prediction (2021) 

– (V)LLMs (~2022)

Alessandro Antonucci, IDSIA II. AI  DL≠

https://www.andrewng.org


Or a new "bubble"?

Alessandro Antonucci, IDSIA II. AI  DL≠

(from Gary Marcus substack)

https://garymarcus.substack.com


Deep Learning as a Series of (Fortunate) Events ... 

Alessandro Antonucci, IDSIA

DATA HARDWARE THEORY

DEEP 
NEURAL 

NETS

new technology 
+ "earlier" theory

II. AI  DL≠
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(Supervised) DL

II. AI  DL≠
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Supervised Learning

• Predictive task: find class  from feature(s)  

• Based on annotated data  

• Algs to (optimally) learn  

• Machine Learning (ML), a two-step process 
• Feature Extraction (FE)  

• Learn  from  

•  

• Deep Learning (DL) directly gets  
• Automatic FE on initial layers 

• Unstructured features: training   requires        
more data than 

Y X
{yi, xi}d

i=1

Y = f(X)

Z = g(X )
Y = h(Z ) {yi, g(xi)}d

i=1

f := h ∘ g

f

f
g

II. AI  DL≠
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Unsupervised Learning

• Annotated data are costly (in many senses) 

• Unannotated data  ? 

• Clustering: group together similar objects 

• Again ML-vs-DL paradigm 

• DL: good FE even in unsupervised settings 

• Variational Autoencoders (VAEs) 

• LLMs are a (super)sophistication of the 
(simple) VAE idea

{xi}d
i=1

Let' (quickly) play with notebook #2

II. AI  DL≠

https://colab.research.google.com/drive/1SMNPraorpw8kfEawWpDItxiaeoJX4WXC?usp=sharing


Discriminative vs. Generative
• Discriminative models designed to find  given  

– Deterministic models  

– But also (conditional) probabilistic, i.e.,  and then 

    or    

• Generative models describe (joint) process behind  

– Joint PMF  

– Predictions?   (as  constant) 

– But also reasoning! E.g., MPE  

– More data (or knowledge) needed for training ... 

– Gen AI = neural generative models from unsupervised data 

– (Good Old-Fashioned) AI = symbolic generative models from experts

Y X
̂y = f( ̂x)

P(Y | ̂x)
̂y = ∑

y∈ΩY

y ⋅ P(y | ̂x) ̂y = arg max
y∈ΩX

P(y | ̂x)

(X, Y )
P(X, Y )

P(y |x) ∝ P(y, x) P(x)
̂x = arg max

x∈ΩX

P(x | ̂y)

Alessandro Antonucci, IDSIA II. AI  DL≠
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AI

ML

DL

II. AI  DL≠
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AI

ML

DL

GOFAI

GenAI

II. AI  DL≠
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"Deep learning has instead given us 
machines with truly impressive 
abilities but no intelligence.  

The difference is profound and lies in 
the absence of a model of reality."

Pearl

Darwiche

AI > Deep Learning

this seems to remain valid 
even in the LLMs age ...

II. AI  DL≠



A Unifying Framework: Neuro-Symbolic AI
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AI

ML

DL

GOFAI

GenAI

Neuro-Sym AI

II. AI  DL≠
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AGI?
Strong AI enthusiasts say ~2028, 

narrow AI people say not just around the corner ...

II. AI  DL≠

https://www.youtube.com/watch?v=kMUdrUP-QCs


III. (P)PGMs 
The sober elegance of (Precise) 
Probabilistic Graphical Models

Alessandro Antonucci, IDSIA



(P)PGMsAlessandro Antonucci, IDSIA

X1 X2 X3 X4 X5 X6 X7 X8 X9

P(X1, X2, …, X9)

Assessing Generative Models (by Decomposition)

• Model variables  

• Joint PMF  ? 

–  humans are not good in eliciting small joint probabilities 

– Data? Sparse, risk of overfitting ...

X = (X1, …, Xn)
P(X)

O(2n)
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X1 X2 X3 X4 X5 X6 X7 X8 X9

P(X1, X2, …, X9) = f(X1, X2, X3, X4) ⊕ g(X4, X5, X6, X7) ⊕ h(X7, X8, X9)

Assessing Generative Models (by Decomposition)

• Model variables  

• Joint PMF  ? 

–  humans are not good in eliciting small joint probabilities 

– Data? Sparse, risk of overfitting ... 

• Powerful idea: decomposition! 

• Composition operator  (to be based on independence)

X = (X1, …, Xn)
P(X)

O(2n)

⊕

(P)PGMs



Independence/Irrelevance as a Decomposition

• Independence P(X1, X2) = P(X1) ⋅ P(X2)

Alessandro Antonucci, IDSIA (P)PGMs



Independence/Irrelevance as a Decomposition

• Independence  

• Equivalent to irrelevance  

             implies  and vice versa

P(X1, X2) = P(X1) ⋅ P(X2)
P(X1 |X2) = P(X1)

P(X1 |X2) =
P(X1, X2)

P(X2)
= P(X1) P(X1, X2) = P(X1) ⋅ P(X2)

Alessandro Antonucci, IDSIA (P)PGMs



Independence/Irrelevance as a Decomposition

• Independence  

• Equivalent to irrelevance  

             implies  and vice versa

P(X1, X2) = P(X1) ⋅ P(X2)
P(X1 |X2) = P(X1)

P(X1 |X2) =
P(X1, X2)

P(X2)
= P(X1) P(X1, X2) = P(X1) ⋅ P(X2)

Alessandro Antonucci, IDSIA (P)PGMs

SPOILER 
The two concepts are not 
necessarily equivalent in 

imprecise settings



Independence/Irrelevance as a Decomposition

• Independence  

• Equivalent to irrelevance  

             implies  and vice versa 

• But if  is irrelevant to , we just don't need it ... 

• More powerful concept:  

– conditional independence 
Es. knowing  makes  and  indep   

– or, equivalently, conditional irrelevance  
Es. knowing  makes  irrelevant to , i.e.,  

P(X1, X2) = P(X1) ⋅ P(X2)
P(X1 |X2) = P(X1)

P(X1 |X2) =
P(X1, X2)

P(X2)
= P(X1) P(X1, X2) = P(X1) ⋅ P(X2)

X X∖{X}

X2 X1 X3 P(X1, X2 |X3) = P(X1 |X3) ⋅ P(X2 |X3)

X2 X3 X1 P(X1 |X2, X3) = P(X1 |X3)

Alessandro Antonucci, IDSIA (P)PGMs



Graphical Models: Intuition

• Graphs (directed or undirected) as 
conditional independence maps 

• Model variables  as 
the nodes of a graph 

X = (X1, …, Xn)
𝒢

Alessandro Antonucci, IDSIA

X1

X3X2

X5X4

X6 X7

X8 X9

(P)PGMs



Graphical Models: Intuition

• Graphs (directed or undirected) as 
conditional independence maps 

• Model variables  as 
the nodes of a graph  

• With undirected graphs

X = (X1, …, Xn)
𝒢

Alessandro Antonucci, IDSIA
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X5X4
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Graphical Models: Intuition

• Graphs (directed or undirected) as 
conditional independence maps 

• Model variables  as 
the nodes of a graph  

• With undirected graphs, separation 
induced by a set of variables (roughly) 
corresponds to conditional 
independence

X = (X1, …, Xn)
𝒢

Alessandro Antonucci, IDSIA

X1

X3X2

X5X4

X6 X7

X8 X9

P(X1, X2, X3, X6, X7, X8, X9 |X4, X5)

= P(X1, X2, X3 |X4, X5) ⋅ P(X6, X7, X8, X9 |X4, X5)

(P)PGMs



Graphical Models: Intuition

• Graphs (directed or undirected) as 
conditional independence maps 

• Model variables  as 
the nodes of a graph  

• With undirected graphs, separation 
induced by a set of variables (roughly) 
corresponds to conditional 
independence 

• Markov condition for di-graphs: 
"every var independent of the non-
desc non-parents given the parents"

X = (X1, …, Xn)
𝒢

Alessandro Antonucci, IDSIA

X1

X3X2

X5X4

X6 X7

X8 X9

P(X6 |X1, X2, X3, X4, X5, X7) = P(X6 |X4, X5)

(P)PGMs



From Chain Rule to Bayesian Networks (Pearl, 1984)

• Chain rule based on (iterated) definition of conditional probability
P(X1, X2, X3) = P(X1 |X2, X3) ⋅ P(X2, X3) = P(X1 |X2, X3) ⋅ P(X2 |X3) ⋅ P(X3)

Alessandro Antonucci, IDSIA (P)PGMs



From Chain Rule to Bayesian Networks (Pearl, 1984)

• Chain rule based on (iterated) definition of conditional probability
 

• If  irrelevant to  given : 

P(X1, X2, X3) = P(X1 |X2, X3) ⋅ P(X2, X3) = P(X1 |X2, X3) ⋅ P(X2 |X3) ⋅ P(X3)

X3 X1 X2 P(X1, X2, X3) = P(X1 |X2) ⋅ P(X2 |X3) ⋅ P(X3)

Alessandro Antonucci, IDSIA (P)PGMs



From Chain Rule to Bayesian Networks (Pearl, 1984)

• Chain rule based on (iterated) definition of conditional probability
 

• If  irrelevant to  given :  

• If  is acyclic and the variables are in topological order, the 

Markov condition implies  with  parents of 

P(X1, X2, X3) = P(X1 |X2, X3) ⋅ P(X2, X3) = P(X1 |X2, X3) ⋅ P(X2 |X3) ⋅ P(X3)

X3 X1 X2 P(X1, X2, X3) = P(X1 |X2) ⋅ P(X2 |X3) ⋅ P(X3)

𝒢
P(X) =

n

∏
i=1

P(Xi |PaXi
) PaXi

Xi

Alessandro Antonucci, IDSIA (P)PGMs



From Chain Rule to Bayesian Networks (Pearl, 1984)

• Chain rule based on (iterated) definition of conditional probability
 

• If  irrelevant to  given :  

• If  is acyclic and the variables are in topological order, the 

Markov condition implies  with  parents of  

• A joint model over  based "only" on the conditional probability 
tables (CPTs) for each variable given their parents 

• Compact, , specification of generative models

P(X1, X2, X3) = P(X1 |X2, X3) ⋅ P(X2, X3) = P(X1 |X2, X3) ⋅ P(X2 |X3) ⋅ P(X3)

X3 X1 X2 P(X1, X2, X3) = P(X1 |X2) ⋅ P(X2 |X3) ⋅ P(X3)

𝒢
P(X) =

n

∏
i=1

P(Xi |PaXi
) PaXi

Xi

X

O(2maxi|PaXi|)

Alessandro Antonucci, IDSIA

X1 X2 X3

(P)PGMs
P(X1) P(X2 |X1) P(X3 |X2)



Bayesian Net (BN) = Graph  + Conditional Probability Tables (CPTs)𝒢

Alessandro Antonucci, IDSIA

X1

X3X2

X5X4

X6 X7

X8 X9

P(X1, …, X9) = P(X1) ⋅ P(X2 |X1) ⋅ P(X3 |X1)
P(X4 |X2) ⋅ P(X5 |X2, X3) ⋅ P(X6 |X5, X4)

P(X7 |X5) ⋅ P(X8 |X5) ⋅ P(X9 |X6, X7)

(P)PGMs



Bayesian Net (BN) = Graph  + Conditional Probability Tables (CPTs)𝒢

Alessandro Antonucci, IDSIA

X1

X3X2

X5X4

X6 X7

X8 X9

P(X1, …, X9) = P(X1) ⋅ P(X2 |X1) ⋅ P(X3 |X1)
P(X4 |X2) ⋅ P(X5 |X2, X3) ⋅ P(X6 |X5, X4)

P(X7 |X5) ⋅ P(X8 |X5) ⋅ P(X9 |X6, X7)

Let' play with notebook #3

(P)PGMs

https://colab.research.google.com/drive/19ozhyJUnRqBI7c2-KA5V8BHrpW7IT4qx?usp=sharing


Bayesian Net (BN) = Graph  + Conditional Probability Tables (CPTs)𝒢
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X1

X3X2

X5X4

X6 X7

X8 X9

P(X1, …, X9) = P(X1) ⋅ P(X2 |X1) ⋅ P(X3 |X1)
P(X4 |X2) ⋅ P(X5 |X2, X3) ⋅ P(X6 |X5, X4)

P(X7 |X5) ⋅ P(X8 |X5) ⋅ P(X9 |X6, X7)

SPOILER: We can generalise BNs 
by replacing the PMFs in the CPTs 

columns of the CPTs by sets of PMFs

Let' play with notebook #3

(P)PGMs

https://colab.research.google.com/drive/19ozhyJUnRqBI7c2-KA5V8BHrpW7IT4qx?usp=sharing


Reasoning with Bayesian Networks (Inference) 

Alessandro Antonucci, IDSIA
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Reasoning with Bayesian Networks (Inference) 

• Marginal on a queried var 

P(xq) = ∑
X∈X∖{Xq}

n

∏
i=1

P(xi |paXi
)

Alessandro Antonucci, IDSIA

X1

X3X2

X5X4

X6 X7

X8 X9

P(X5) = ?

(P)PGMs



Reasoning with Bayesian Networks (Inference) 

• Marginal on a queried var 

 

• Updating query given evidence 

 

P(xq) = ∑
X∈X∖{Xq}

n

∏
i=1

P(xi |paXi
)

P(xq |xE) =
∑X∈X∖{Xq,XE} ∏n

i=1 P(xi |paXi
)

∑X∈X∖{Xq}
∏n

i=1 P(xi |paXi
)

Alessandro Antonucci, IDSIA

x1

X3X2

X5X4

X6 X7

x8 X9

P(X5 |x1, x8) = ?

(P)PGMs



Reasoning with Bayesian Networks (Inference) 

• Marginal on a queried var 

 

• Updating query given evidence 

 

Both (NP-)hard tasks, fast exact inference with singly-
connected topologies, in general exponential wrt 
treewidth, many good approximate schemes

P(xq) = ∑
X∈X∖{Xq}

n

∏
i=1

P(xi |paXi
)

P(xq |xE) =
∑X∈X∖{Xq,XE} ∏n

i=1 P(xi |paXi
)

∑X∈X∖{Xq}
∏n

i=1 P(xi |paXi
)

Alessandro Antonucci, IDSIA
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Reasoning with Bayesian Networks (Inference) 

• Marginal on a queried var 

 

• Updating query given evidence 

 

Both (NP-)hard tasks, fast exact inference with singly-
connected topologies, in general exponential wrt 
treewidth, many good approximate schemes 

• Most probable explanation (MMAP) is harder (NPPP) 

P(xq) = ∑
X∈X∖{Xq}

n

∏
i=1

P(xi |paXi
)

P(xq |xE) =
∑X∈X∖{Xq,XE} ∏n

i=1 P(xi |paXi
)

∑X∈X∖{Xq}
∏n

i=1 P(xi |paXi
)

x*q := arg max ∑
X∈X∖{Xq}

n

∏
i=1

P(xi |paXi
)

Alessandro Antonucci, IDSIA

x1

X3X2

X5X4

X6 X7

x8 X9

arg max
x4,x5

P(x4, x5 |x1, x8) = ?

(P)PGMs



Reasoning with Bayesian Networks (Inference) 

• Marginal on a queried var 

 

• Updating query given evidence 

 

Both (NP-)hard tasks, fast exact inference with singly-
connected topologies, in general exponential wrt 
treewidth, good approximate schemes 

• Most probable explanation (MMAP) harder (NPPP)! 

P(xq) = ∑
X∈X∖{Xq}

n

∏
i=1

P(xi |paXi
)

P(xq |xE) =
∑X∈X∖{Xq,XE} ∏n

i=1 P(xi |paXi
)

∑X∈X∖{Xq}
∏n

i=1 P(xi |paXi
)

x*q := arg max ∑
X∈X∖{Xq}

n

∏
i=1

P(xi |paXi
)

Alessandro Antonucci, IDSIA

X1

X3X2

X5X4

X6 X7

X8 X9

SPOILER 
With imprecise models, marginal and 

updating are non-equivalent tasks, 
MMAP depends on the decision criterion

(P)PGMs

Let' keep playing with notebook #3

https://colab.research.google.com/drive/19ozhyJUnRqBI7c2-KA5V8BHrpW7IT4qx?usp=sharing


• Deep models (aka arithmetic/prob circuits) 

• Generative models based on graph 

• Tractable: inference  for basic tasks 

•  expresses an inferential computation 
schemes, not the (context-specific) 
independence relations 

• Competitive performance wrt discriminative 
DL models, but less interpretable than BNs

O( |𝒢 | )
𝒢

Tractable Models: Sum-Product Networks

Alessandro Antonucci, IDSIA

+

xx x

+ + + +

X2X1X1 X2

0.5 0.2 0.3

0.1

0.2

0.5

0.3

(P)PGMs



Tractable Models: Sum-Product Networks
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+

xx x

+ + + +

X2X1X1 X2

0.5 0.2 0.3

0.1

0.2

0.5

0.3

(P)PGMs

P1(X1) = 0.1 ⋅ IX1
+ 0.9 ⋅ IX1

P2(X1) = 0.2 ⋅ IX1
+ 0.8 ⋅ IX1



Tractable Models: Sum-Product Networks
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+

xx x

+ + + +

X2X1X1 X2

0.5 0.2 0.3

0.1

0.2

0.5

0.3

(P)PGMs

P1(X1) = 0.1 ⋅ IX1
+ 0.9 ⋅ IX1

P2(X1) = 0.2 ⋅ IX1
+ 0.8 ⋅ IX1

P1(X2) = 0.5 ⋅ IX2
+ 0.5 ⋅ IX2

P2(X2) = 0.3 ⋅ IX2
+ 0.7 ⋅ IX2



Tractable Models: Sum-Product Networks
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+

xx x

+ + + +

X2X1X1 X2

0.5 0.2 0.3

0.1

0.2

0.5

0.3

(P)PGMs

P1(X1) = 0.1 ⋅ IX1
+ 0.9 ⋅ IX1

P2(X1) = 0.2 ⋅ IX1
+ 0.8 ⋅ IX1

P1(X2) = 0.5 ⋅ IX2
+ 0.5 ⋅ IX2

P2(X2) = 0.3 ⋅ IX2
+ 0.7 ⋅ IX2

P1(X1, X2) = P1(X1) ⋅ P2(X2)
P2(X1, X2) = P1(X1) ⋅ P2(X2)
P3(X1, X2) = P2(X1) ⋅ P2(X2)



Tractable Models: Sum-Product Networks
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+

xx x

+ + + +

X2X1X1 X2

0.5 0.2 0.3

0.1

0.2

0.5

0.3

(P)PGMs

P1(X1) = 0.1 ⋅ IX1
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+ 0.8 ⋅ IX1

P1(X2) = 0.5 ⋅ IX2
+ 0.5 ⋅ IX2

P2(X2) = 0.3 ⋅ IX2
+ 0.7 ⋅ IX2

P1(X1, X2) = P1(X1) ⋅ P2(X2)
P2(X1, X2) = P1(X1) ⋅ P2(X2)
P3(X1, X2) = P2(X1) ⋅ P2(X2)

P(X1, X2) = 0.5 ⋅ P1(X1, X2) + 0.2 ⋅ P2(X1, X2) + 0.3 ⋅ P3(X1, X2)

Spoiler 
we can generalise sum-product 
nets to imprecise probability by 

simply replacing the PMFs 
annotating the edges leaving the 

sum nodes with sets of PMFs

SPN2BN and BN2SPN transformations exists



(All PGMs Roads Lead to) Judea Pearl

Alessandro Antonucci, IDSIA

Bayesian Nets 
(~1988)

Do Calculus 
(  2000 )≤

Structural Causal Models 
(  2016 )≤

Credal 
Nets 

(~2000)

Pearl

Cozman

IV. VII.

Zaffalon

(P)PGMs



IV. CN = BN + CSs 
Credal Nets as Bayesian Nets with 
(Credal) Set-Valued Parameters

Alessandro Antonucci, IDSIA



Basic (Imprecise) Probability Theory

Alessandro Antonucci, IDSIA

• Credal set (CS) over : (just) a set of PMFs  (over ) 

• Expectation  different for each  , 

focus on lower (upper) bounds, e.g., 

K(X) P(X) X
𝔼[ f ] = ∑

x∈ΩX

P(x) ⋅ f(x) P(X) ∈ K(X)

𝔼[ f ] = inf
P(X)∈K(X) ∑

x

P(x) ⋅ f(x)
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• Credal set (CS) over : (just) a set of PMFs  (over ) 

• Expectation  different for each  , 

focus on lower (upper) bounds, e.g.,  

• (for finite settings) bounds unaffected by convex hull ( ) 

• This allows to focus on extreme points ( ), LP/combinatorial task: 
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inf
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x
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• Expectation  different for each  , 

focus on lower (upper) bounds, e.g.,  

• (for finite settings) bounds unaffected by convex hull ( ) 

• This allows to focus on extreme points ( ), LP/combinatorial task: 

  

• Often focus on convex CSs with finite number of extreme points
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Basic (Imprecise) Probability Theory

IV. CN = BN + CSsAlessandro Antonucci, IDSIA

• Credal set (CS) over  = a set of PMFs  (over ) 

• Expectation  different for each  , 

focus on lower (upper) bounds, e.g.,  

• (for finite settings) Bounds unaffected by convex hull ( ) 

• This allows to focusing on extreme points ( ), combinatorial task: 

  

• Often focus on convex CSs with finite number of extreme points

K(X) P(X) X
𝔼[ f ] = ∑

x∈ΩX

P(x) ⋅ f(x) P(X) ∈ K(X)

𝔼[ f ] = inf
P(X)∈K(X) ∑

x

P(x) ⋅ f(x)

CH
ext

inf
P(X)∈K(X) ∑

x

P(x) ⋅ f(x) = inf
P∈CH[K(X)] ∑

x

P(x) ⋅ f(x) = min
P∈ext[CH[K(X)]] ∑

x

P(x) ⋅ f(x)

This is not enough to generalise BNs to CSs: 
BNs are models based on independence, 

we need an independence concept for CSs



Independence Concepts with CSs

Alessandro Antonucci, IDSIA

• Given CS , what  independent of  means? Irrelevant? 

•  and  (stochastically) independent  ? 

• So-called strict independence, does not preserve convexity ...

K(X, Y ) X Y
X Y ∀P(X, Y ) ∈ K(X, Y )
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• Given CS , what  independent of  means? Irrelevant? 

•  and  (stochastically) independent  ? 

• So-called strict independence, does not preserve convexity ...

K(X, Y ) X Y
X Y ∀P(X, Y ) ∈ K(X, Y )

IV. CN = BN + CSs

Exercise: With  and  Boolean, 

-   is a a 4-element normalised array 

- The probability simplex is a tetrahedron 

- Strictly independent PMFs are on a "maximally 
non-convex" surface inside such volume  

Draw/imagine the surface (Solution: https://www.geogebra.org/3d/e3rxtqjh)

X1 X2
P(X1, X2)

https://www.geogebra.org/3d/e3rxtqjh
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• So-called strong, convenient choice for sensitivity analysis
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• Given CS , what  independent of  means? Irrelevant? 

•  and  (stochastically) independent  ? 

• So-called strict independence, does not preserve convexity ... 

•  and  (stochastically) independent  ! 

• So-called strong, convenient choice for sensitivity analysis 

• Another popular concept is epistemic irrelevance: lower and 
upper expectation of functions of  unaffected by  (note that the 
concept is asymmetric and epistemic irrelevance  independence) 

• In general, epistemic irrelevance gives more conservative 
inferences than strong independence, in some cases equal results

K(X, Y ) X Y
X Y ∀P(X, Y ) ∈ K(X, Y )

X Y ∀P(X, Y ) ∈ ext[K(X, Y )]

X Y
≠

IV. CN = BN + CSs



Credal Networks (CNs, Cozman, 2000)

Alessandro Antonucci, IDSIA

• Simple idea: replace conditional PMFs in the CPTs with conditional 
CSs and obtain a joint CS (instead of a joint PMF) 

• Each combination of valid CPT specifications defines a joint PMF 
satisfying the (stochastic) independence relations depicted by  

• This would be a strict CN, inducing a non-convex joint CS 

• In this sense, we are doing sensitivity analysis for BNs

𝒢
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Credal Networks (CNs, Cozman, 2000)

Alessandro Antonucci, IDSIA

• Simple idea: replace conditional PMFs in the CPTs with conditional 
CSs and obtain a joint CS (instead of a joint PMF) 

• Each combination of valid CPT specifications defines a joint PMF 
satisfying the (stochastic) independence relations depicted by  

• This would be a strict CN, inducing a non-convex joint CS 

• In this sense, we are doing sensitivity analysis for BNs 

• Let us take the convex hull of the strict CS 

• Good news: the vertices of convex hull of the strict joint CS are 
joint PMFs induced by BN whose parameters are the extreme 
points of the joint local CSs 

• This corresponds to strong CNs and it allows to maintain a 
combinatorial nature in the model

𝒢

IV. CN = BN + CSs



(Strong) Credal Networks in Practice

Alessandro Antonucci, IDSIA

• Directed acyclic graph  over variables  

• Assess CS  for each  and  

• Build the joint CS ("strict extension") , i.e.,

𝒢 X := (X1, …, Xn)
K(Xi |paXi

) Xi ∈ X paXi
∈ ΩPaXi

K(X)

K(X) := {P(X) : P(x) =
n

∏
i=1

P(xi |paXi
), ∀P(Xi |paXi

) ∈ K(Xi |paXi
)}
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(Strong) Credal Networks in Practice

Alessandro Antonucci, IDSIA

• Directed acyclic graph  over variables  

• Assess CS  for each  and  

• Build the joint CS ("strict extension") , i.e.,

 

• Compute inferences wrt such the strong extension, i.e.,   

• Good news, the problem is combinatorial
 

• CN as a (finite) collection of ("extreme") BNs over same 

𝒢 X := (X1, …, Xn)
K(Xi |paXi

) Xi ∈ X paXi
∈ ΩPaXi

K(X)

K(X) := {P(X) : P(x) =
n

∏
i=1

P(xi |paXi
), ∀P(Xi |paXi

) ∈ K(Xi |paXi
)}

CH[K(X)]

ext[CH[K(X]] ⊆ {P(X : P(x = ∏
i

P(xi |paXi
), P(Xi |paXi

) ∈ ext[K(Xi |paXi
)]}

𝒢

Let' play with notebook #4
IV. CN = BN + CSs

https://colab.research.google.com/drive/1dMReMjusVp5k5EExkKp5KkKxZELak_o-?usp=sharing


Inference in Credal Networks

Alessandro Antonucci, IDSIA

• Marginal query   

• Closer to MMAP inference in BN, NPPP-hard task

P(xq) = min
P(Xi|paXi)∈ext[K(Xi|paXi)]

∑
X∖{Xq}

n

∏
i=1

P(xi |paXi
)

IV. CN = BN + CSs
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• Posterior as a fractional task (num/den non indep optimisations)
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• Marginal query   

• Closer to MMAP inference in BN, NPPP-hard task 

• Posterior as a fractional task (num/den non indep optimisations)

 

• Fast exact inference only in binary poly-trees (2U, Zaffalon, 1998) 
and epistemic trees (de Cooman et al., 2008) 

• Fast approximated schemes and libraries 

• E.g., LP inner approx (Antonucci et al., 2014) 

• Credal MMAP? Harder than updating, depends on decision rule
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)
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• Marginal query   

• Closer to MMAP inference in BN, NPPP-hard task 

• Posterior as a fractional task (num/den non indep optimisations)

 

• Fast exact inference only in binary poly-trees (2U, Zaffalon, 1998) 
and epistemic trees (de Cooman et al., 2008) 

• Fast approximated schemes and libraries 

• E.g., LP inner approx (Antonucci et al., 2014) 

• Credal MMAP? Harder than updating, depends on decision rule

P(xq) = min
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)
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Let's check this with notebook #4
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Credal Sum-Product Networks (Mauà et al., 2017)

Alessandro Antonucci, IDSIA

• "Strict" semantics: SPNs do not rely on independence concepts 

• Credality makes inference harder, but many tasks remain tractable 

• Also credal SDDs (~ SPNs + logical constraints) (Mattei et al.,2019) 

• No straightforward mappings CN2CSPN or CSPN2CN

IV. CN = BN + CSs



V. CN4DSS 
Knowledge-Based 
Decision-Support Systems 
by Credal Networks

Alessandro Antonucci, IDSIA



Knowledge-Based Decision-Support Systems

V. CN4DSSAlessandro Antonucci, IDSIA

• Aka Expert Systems, very popular GOFAI tools 

• Less hype in the DL age, but annotated data are costly and 
in practice lot of people still use such models (e.g. BNs) 

• Why CNs?



Knowledge-Based Decision-Support Systems

V. CN4DSSAlessandro Antonucci, IDSIA

• Aka Expert Systems, very popular GOFAI tools 

• Less hype in the DL age, but annotated data are costly and 
in practice lot of people still use such models (e.g. BNs) 

• Why CNs? CS can be a better model of the expert 
(uncertain) knowledge. Knowledge engineering by CSs: 

– Models of complete ignorance (vacuous CS) 

– E.g., conservative updating for non-MAR missing data 

– Qualitative assessments by probability intervals 

– Preferences as inequality constraints 

– Positive/negative influence or synergy

Let's check gallery #1

https://github.com/sipta/school24-lecture-material/blob/main/14-08-AI/gallery1.pdf
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[Exe #1] Fault trees (Vesely et al, 1981)
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Exercise on Knowledge-Based Decision-Support Systems

• Build a DSS based on your knowledge based on a CN 

• Decide the variables (few) 

• Define a (correlational) graph over them 

• Express your (uncertain) knowledge about the state of each 
variable given its parents 

• Use this CN to extract decision-support information        
(for inference we do brute-force here) 

• Lack of ideas? Let's check the examples in gallery #2 

• Or let's define a simple 3-node CN/DSS together

https://github.com/sipta/school24-lecture-material/blob/main/14-08-AI/gallery2.pdf
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VI. (C)ML 
Credal Machine Learning



(Credal) Machine Learning with CNs

95Alessandro Antonucci, IDSIA

• Statistical learning with CNs? 

– ? Structural BN learning or assumptions (ex. naive/TAN) 

– CSs? IDM (or likelihood-based) approaches 

– Decisions? E.g., maximality, undominated classes. 

• These are credal classifiers, possibly returning multiple options 

• With IDM we say that an instance is: 

– indeterminate if different priors lead to different classes 

– robust if all the priors gives the same class 

• BN compatible classifier? Good accuracy on robust instances, 
inaccurate on the indeterminate ones

𝒢
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• Statistical learning with CNs? 

– ? Structural BN learning or assumptions (ex. naive/TAN) 

– CSs? IDM (or likelihood-based) approaches 

– Decisions? E.g., maximality, undominated classes. 

• These are credal classifiers, possibly returning multiple options 

• With IDM we say that an instance is: 

– indeterminate if different priors lead to different classes 

– robust if all the priors gives the same class 

• BN compatible classifier? Good accuracy on robust instances, 
inaccurate on the indeterminate ones

𝒢

Let's quickly browse gallery 3 with its 
credal classifiers and their evaluation

https://github.com/sipta/school24-lecture-material/blob/main/14-08-AI/gallery3.pdf


IDM & (Personal) Considerations on CML
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• Global IDM constraints between CSs specification 

• Local? Easier optimisation, but more imprecise 

• ML conferences can be very selective and credal 
approaches not always well-perceived. However, 
strong IP papers have been accepted (e.g., 
Hüllermeier/Caprio/Destercke/de Campos/...) 

• Distinguishing problem formulation from the 
corresponding optimisation might be a good 
practice, if the experiments are good, not having 
an exact ad hoc solution might be still ok 

Y X

X Y n

0 0 3+t

0 1 4+u

1 0 2+w

1 1 1+(1-t-u-w)

0 ≤ t, u, w ≤ 1 t + u + w ≤ 1

one virtual instance (ESS=1)

IDM constraints

P(Y = 0) =
5 + t + w

11
P(X = 0 |Y = 0) =

3 + t
5 + t + w

AAA

Constraints between 
 and K(X ) K(X = 0 |Y = 0)



VII. SCMs  CNs 
Structural Causal Models are 
(solvable by) Credal Networks 

≡
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2. INTERVENTION
ACTIVITY:       Doing, Intervening
QUESTIONS:  What if I do . . . ? How?

(What would Y be if I do X?)  
EXAMPLES: If I take aspirin, will my headache be cured?

What if we ban cigarettes?

1. ASSOCIATION
ACTIVITY:       Seeing, Observing
QUESTIONS:  What if I see . . . ?

(How would seeing X change my belief in Y?)  
EXAMPLES: What does a symptom tell me about a disease?

What does a survey tell us about the election results?

3. COUNTERFACTUALS
ACTIVITY:       Imagining, Retrospection, Understanding
QUESTIONS:  What if I had done . . . ? Why?

(Was it X that caused Y? What if X had not 
occurred? What if I had acted differently?)  

EXAMPLES: Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not 
killed him? What if I had not smoked the last 2 years?

3-LEVEL  HIERARCHY
Pearl's Ladder of Causation and the Need for a Causal AI

ML/DL

RL

(Causal)  
AI?

Source: The Book of Why, Pearl & Mc Kenzie
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EXAMPLES: If I take aspirin, will my headache be cured?
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ACTIVITY:       Imagining, Retrospection, Understanding
QUESTIONS:  What if I had done . . . ? Why?

(Was it X that caused Y? What if X had not 
occurred? What if I had acted differently?)  

EXAMPLES: Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not 
killed him? What if I had not smoked the last 2 years?

3-LEVEL  HIERARCHY
Pearl's Ladder of Causation and the Need for a Causal AI

ML/DL

RL

(Causal)  
AI?

Source: The Book of Why, Pearl & Mc Kenzie

IPs (and CNs) as a 
valuable support to 

climb the ladder

VII. SCMs  CNs≡



Structural Causal Models

• Manifest endogenous variable  

• Observations  available 

• From  statistical learning of 

X
𝒟

𝒟 P(X)
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Boolean  
 

X
P(X = 0) = p

X
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• From  statistical learning of  

• A latent exogenous variable  

• States of  determines those of  
through a structural equation          

 surjective but not invertible 

•  

• A  giving ? More than one!
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P(X = 0) = p

U ∈ {0,1,2,3}

fX(U = 0) = 0

fX(U = 1) = 0

fX(U = 2) = 1

fX(U = 3) = 1

P(U ) = [ p
2

,
p
2

,
1 − p

2
,

1 − p
2 ]

U

X
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• Observations  available 
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• A latent exogenous variable  

• States of  determines those of  
through a structural equation          

 surjective but not invertible 

•  

•  giving  ? More than one! 

• Causal inference to be based on the 
credal set  compatible with 
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Boolean  
 

X
P(X = 0) = p

U ∈ {0,1,2,3}

fX(U = 0) = 0

fX(U = 1) = 0

fX(U = 2) = 1

fX(U = 3) = 1

K(U ) = {P(U ) : P(U = 0) + P(U = 1) = p}

P(U ) = [ p
2

,
p
2

,
1 − p

2
,

1 − p
2 ]

U

X

fX
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Boolean  
 

X
P(X = 0) = p

U ∈ {0,1,2,3}

fX(U = 0) = 0

fX(U = 1) = 0

fX(U = 2) = 1

fX(U = 3) = 1

K(U ) = {P(U ) : P(U = 0) + P(U = 1) = p}

P(U ) = [ p
2

,
p
2

,
1 − p

2
,

1 − p
2 ]

U

X

fX
This is a (minimalistic) 

structural causal model

VII. SCMs  CNs≡



Structural Causal Models (General Definition)

•  (endogenous variables) 

•  (exogenous variables) 

• Directed graph  assumed to be                      
semi-Markovian = root in , non-root in  

• Equation  for each  

• Marginal  for  (assessed if possible)

X := (X1, …, Xn)
U := (U1, …, Um)

𝒢
U X

X = fX(PaX) X ∈ X
P(U) U ∈ U
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• Directed graph  assumed to be                      
semi-Markovian = root in , non-root in  

• Equation  for each  
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SCMs as (one of) the 
most powerful tools    
for causal analyses
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Headache Example (Staying on the First Rung)

• You take aspirin ( ) and headache vanishes ( ) 

• Probability that this has been due to aspirin? 

• Observational data  about the two variables available 

• From  ,  > 

X = 1 Y = 1

𝒟
𝒟 P(Y = 0 |X = 0) = 0.5 P(Y = 0 |X = 1) = 0.1

Alessandro Antonucci, IDSIA

X Y n

0 0 ...

0 1 ....

1 0 ....

1 1 ....

X
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Headache Example (Staying on the First Rung)

• You take aspirin ( ) and headache vanishes ( ) 

• Probability that this has been due to aspirin? 

• Observational data  about the two variables available 

• From  ,  >  

• Not genuine causal analysis: adding further covariates 
might give contradictory results (Simpson's paradox) 

•  

X = 1 Y = 1

𝒟
𝒟 P(Y = 0 |X = 0) = 0.5 P(Y = 0 |X = 1) = 0.1

P(Y = 0 |X = 0, Z = z) < P(Y = 0 |X = 1, Z = z) ∀z
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X Y n

0 0 ...

0 1 ....

1 0 ....

1 1 ....

X
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Sport might seriously hurt your vascular health?
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Sport might seriously hurt your vascular health? No!

Alessandro Antonucci, IDSIA VII. SCMs  CNs≡



Simpson's Paradox or Gender Bias?

UC Berkley in 1973

Alessandro Antonucci, IDSIA

TOTAL MEN WOMEN

Applicants Admitted Applicants Admitted Applicants Admitted

Total 4526 39% 2691 45% 1835 30%
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DEPT. TOTAL MEN WOMEN

Applicants Admitted Applicants Admitted Applicants Admitted

Total 4526 39% 2691 45% 1835 30%

A 933 64% 825 62% 108 82%

B 585 63% 560 63% 25 68%

C 918 35% 325 37% 593 34%

D 792 34% 417 33% 375 35%

E 584 25% 191 28% 393 24%

F 714 6% 373 6% 341 7%
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DEPT. TOTAL MEN WOMEN

Applicants Admitted Applicants Admitted Applicants Admitted

Total 4526 39% 2691 45% 1835 30%

A 933 64% 825 62% 108 82%

B 585 63% 560 63% 25 68%

C 918 35% 325 37% 593 34%

D 792 34% 417 33% 375 35%

E 584 25% 191 28% 393 24%

F 714 6% 373 6% 341 7%

Time to climb up             
the ladder
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Take the Aspirin! (Interventions = Second Rung)

• Gender  as an additional (endogenous) variable 

• Markovian  (one exo parent for each endo) 

• Force people to take aspirin = intervention 

Z
𝒢

do(X = 1)
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Take the Aspirin! (Interventions = Second Rung)

• Gender  as an additional (endogenous) variable 

• Markovian  (one exo parent for each endo) 

• Force people to take aspirin = intervention  

•  should be modified (constant output), after a surgery 
on  (incoming arcs removed) intervention = observation 

Z
𝒢

do(X = 1)
fX

𝒢
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Take the Aspirin! (Interventions = Second Rung)

• Gender  as an additional (endogenous) variable 

• Markovian  (one exo parent for each endo) 

• Force people to take aspirin = intervention  

•  should be modified (constant output), after a surgery 
on  (incoming arcs removed) intervention = observation  

• Pearl's do calculus allows to reduce interventional queries 
to observational ones (solved by BN inference) 

• E.g., backdoor  

• Do calculus only needs  (and not the SCM)!

Z
𝒢

do(X = 1)
fX

𝒢

P(y |do(X = x)) = ∑
z

P(y |x, z) ⋅ P(z)

𝒢
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Identifiability of Causal Queries

• Do calculus reduces interventional to observational 
queries by exploiting d-separation in SCMs 

• Sound and complete (graph-theoretic) algorithm      
+ inference in the empirical joint PMF 

• Alternatively: surgery and inference in the SCM ...
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Identifiability of Causal Queries

• Do calculus reduces interventional to observational 
queries by exploiting d-separation in SCMs 

• Sound and complete (graph-theoretic) algorithm      
+ inference in the empirical joint PMF 

• Alternatively: surgery and inference in the SCM ... 

• Not all queries can be computed by do calculus.      
If not we call the query unidentifiable 

• Emerging idea: unidentifiable queries are only 
partially identifiable (bounds can be estimated!) 

• Recent works in this field by various groups

Alessandro Antonucci, IDSIA

P(x3 |do(x2) ∈ [l, u]

Bareinboim
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Identifiability of Causal Queries

• Do calculus reduces interventional to observational 
queries by exploiting d-separation in SCMs 

• Sound and complete (graph-theoretic) algorithm      
+ inference in the empirical joint PMF 

• Alternatively: surgery and inference in the SCM ... 

• Not all queries can be computed by do calculus.      
If not we call the query unidentifiable 

• Emerging idea: unidentifiable queries are only 
partially identifiable (bounds can be estimated!) 

• Recent works in this field by various groups

125Alessandro Antonucci, IDSIA

P(x3 |do(x2) ∈ [l, u]

Bareinboim

Optimisation techniques 
for IPs to be used for 
partial identifiability



Back to Headache (Moving to the Third Rung)

• What if I had not taken the aspirin, would have 
headache stayed? 

• An intervention contrasting the current observation ... 

• This is a counterfactual query  
(called probability of necessity, PN, sub denote do)

P(YX=0 = 0 |X = 1,Y = 1)

Alessandro Antonucci, IDSIA VII. SCMs  CNs≡



Back to Headache (Moving to the Third Rung)

• What if I had not taken the aspirin, would have 
headache stayed? 

• An intervention contrasting the current observation ... 

• This is a counterfactual query  
(called probability of necessity, PN, sub denote do) 

• We need the complete SCM:  +  +  

• With complete SCM, an augmented model called twin 
network with duplicated endogenous variables is used 
for counterfactual analysis after surgery 

• (Non-trivial) counterfactuals are unidentifiable! 

P(YX=0 = 0 |X = 1,Y = 1)

𝒢 {fX}X∈X {P(U)}U∈U
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To Compute Counterfactuals ...

• We need a fully specified SCM, i.e., 

1. Graph  over                                                                   
(often available by domain expert or Markovian assumption)  

2. Endogenous equations                                          
(available or obtained by complete enumeration) 

3. Exogenous marginals  (rarely available)

𝒢 (X, U)

{fX}X∈X

{P(U)}U∈U
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To Compute Counterfactuals ...

• We need a fully specified SCM, i.e., 

1. Graph  over                                                                   
(often available by domain expert or Markovian assumption)  

2. Endogenous equations                                          
(available or obtained by complete enumeration) 

3. Exogenous marginals  (rarely available) 

• Latent  unavailable? We have data  about  

• Compute counterfactual = Compute  from   

• Not a new problem: LP approach for special cases already in Balke 
and Pearl (1994), but do-calculus reduced attention to CFs

𝒢 (X, U)

{fX}X∈X

{P(U)}U∈U

P(U) = ∏P(U) 𝒟 X
{P(U)}U∈U 𝒟
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Causal Analysis at the Party (Balke & Pearl 1994)

Ann sometimes goes to parties 
Bob is not a party guy,  
but he likes Ann 
and he might be there 
Carl  broke up with Ann,  
he tries to avoid Ann,  
but he likes parties 
Carl and Bob hate each other,  
they might have a Scuffle 
if both at the party

Alessandro Antonucci, IDSIA

A

B C

S

UA

UC

US

UB

besides such knowledge assume  
we have observations  corresponding  

to a joint mass function  
(e.g., in the form of a BN)

𝒟
P(A, B, C, S)

P(B |do(a)) = ?
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Causal Analysis at the Party (Balke & Pearl 1994)

Ann sometimes goes to parties 
Bob is not a party guy,  
but he likes Ann 
and he might be there 
Carl  broke up with Ann,  
he tries to avoid Ann,  
but he likes parties 
Carl and Bob hate each other,  
they might have a Scuffle 
if both at the party

Alessandro Antonucci, IDSIA

A

B C

S

UA

UC

US

UB

besides such knowledge assume  
we have observations  corresponding  

to a joint mass function  
(e.g., in the form of a BN)

𝒟
P(A, B, C, S)

P(B |do(a)) = ?

"Ann must not be 
at the party, 

or Bob would be there 
instead of home"

P(B |do(a)) = ?

"If Bob were 
at the party, 

then Bob and Carl 
would surely Scuffle"

P(Sb |b) = ?

CAUSAL GOSSIP
INTERVENTIONAL COUNTERFACTUAL

a (fully specified) SCM can answer these questions
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Alessandro Antonucci, IDSIA

• Find the exogenous marginals? 

B

S

UC

fS(b, c, uS)

fB(a, uB)
fC(a, uC)

fA(uA) UA

US

UB A

P(UA)P(UB)P(UC)P(US)

C

Let's (Eventually) Use IPs!
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Alessandro Antonucci, IDSIA

∑
uA,uB,uC,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS)] = p̃(a, b, c, s)

• Find the exogenous marginals? 

• Endogenous (= with ) 
consistency

𝒟
B

S

UC

fS(b, c, uS)

fB(a, uB)
fC(a, uC)

fA(uA) UA

US

UB A

P(UA)P(UB)P(UC)P(US)

C

Let's (Eventually) Use IPs!
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∑
uA,uB,uC,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS)] = p̃(a, b, c, s)

• Find the exogenous marginals? 

• Endogenous (= with ) 
consistency 

• This induces global non-linear   
(so-called Verma) constraints

𝒟
B

S

UC

fS(b, c, uS)

fB(a, uB)
fC(a, uC)

fA(uA) UA

US

UB A

P(UA)P(UB)P(UC)P(US)

C

UnknownUnknown Empirical, knownUnknown Unknown

Let's (Eventually) Use IPs!
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∑
uA,uB,uC,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS)] = p̃(a, b, c, s)

• Find the exogenous marginals? 

• Endogenous (= with ) 
consistency 

• This induces global non-linear   
(so-called Verma) constraints 

• Constraints became local and 
linear ones by marginalisation and 
conditioning (Zaffalon et al., 2020)

𝒟
B

S

UC

fS(b, c, uS)

fB(a, uB)
fC(a, uC)

fA(uA) UA

US

UB A

P(UA)P(UB)P(UC)P(US)

C

UnknownUnknown Empirical, knownUnknown Unknown

Let's (Eventually) Use IPs!
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B

S

UC

fS(b, c, uS)

fB(a, uB)
fC(a, uC)

fA(uA) UA

US

UB A

C

Constraining Exogenous Marginals

∑
uA,uB,uC ,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS )] = p̃(a , b, c, s)
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B

S

UC

fS(b, c, uS)

fB(a, uB)
fC(a, uC)

fA(uA) UA

US

UB A

C

Constraining Exogenous Marginals

P(a) = ∑
uA

P(a |uA) ⋅ P(uA)

P(b |a) = ∑
uB

P(b |a, uB) ⋅ P(uB)

P(c |a) = ∑
uC

P(c |a, uC) ⋅ P(uC)

P(s |b, c) = ∑
uS

P(s |b, c, uS) ⋅ P(uS)

∑
uA,uB,uC ,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS )] = p̃(a , b, c, s)
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B

S

UC

fS(b, c, uS)

fB(a, uB)
fC(a, uC)

fA(uA) UA

US

UB A

C

Constraining Exogenous Marginals

P(a) = ∑
uA

P(a |uA) ⋅ P(uA)

P(b |a) = ∑
uB

P(b |a, uB) ⋅ P(uB)

P(c |a) = ∑
uC

P(c |a, uC) ⋅ P(uC)

P(s |b, c) = ∑
uS

P(s |b, c, uS) ⋅ P(uS)

∑
uA,uB,uC ,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS )] = p̃(a , b, c, s)

• Linear constraints on marginal exogenous probabilities leading 
to the credal sets specification , , ,  

• Structural equations (= endogenous CPTS) remain unaffected

K(UA) K(UB) K(UC) K(US)
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B

S

UC

fS(b, c, uS)

fB(a, uB)
fC(a, uC)

fA(uA) UA

US

UB A

C

Constraining Exogenous Marginals

P(a) = ∑
uA

P(a |uA) ⋅ P(uA)

P(b |a) = ∑
uB

P(b |a, uB) ⋅ P(uB)

P(c |a) = ∑
uC

P(c |a, uC) ⋅ P(uC)

P(s |b, c) = ∑
uS

P(s |b, c, uS) ⋅ P(uS)

∑
uA,uB,uC ,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS )] = p̃(a , b, c, s)

• Linear constraints on marginal exogenous probabilities leading 
to the credal sets specification , , ,  

• Structural equations (= endogenous CPTS) remain unaffected

K(UA) K(UB) K(UC) K(US)

SCMs are CN!
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B

S

A

C

Reducing Causal Queries to CN Inference

• Consistent SCMs as a single CN 

K(UA)

K(UB)

K(US)

K(UC)

VII. SCMs  CNs≡



Alessandro Antonucci, IDSIA

B

S

A

C

Reducing Causal Queries to CN Inference

• Consistent SCMs as a single CN 

• d-separation holds for CNs,      
we can do surgery à la Pearl 

• CN algs to compute bounds! 

K(UA)

K(UB)

K(US)

K(UC)
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B

S

A

C

Reducing Causal Queries to CN Inference

• Consistent SCMs as a single CN 

• d-separation holds for CNs,      
we can do surgery à la Pearl 

• CN algs to compute bounds! 

• Interventions are straightforward 

K(UA)

K(UB)

K(US)

K(UC)

P(B |do(a)) ∈ [P′￼(B |a), P′￼(B |a)]
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Reducing Causal Queries to CN Inference

• Consistent SCMs as a single CN 

• d-separation holds for CNs,      
we can do surgery à la Pearl 

• CN algs to compute bounds! 

• Interventions are straightforward 

• Counterfactuals require twin nets 

• Identifiable?  P = P

P(B |do(a)) ∈ [P′￼(B |a), P′￼(B |a)]

B

B'

P(Sb |b) ∈ [P(S |b, b′￼), P(S |b, b′￼)]

S
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Markovian and Quasi-Markovian SCMs as CNs

Alessandro Antonucci, IDSIA

Markovian Models

Quasi-Markovian Models
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Software and Experiments

Alessandro Antonucci, IDSIA

Java library for Causal Inference 
built on the top of CREMA

Java library for CNs
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Software and Experiments

Alessandro Antonucci, IDSIA

Java library for Causal Inference 
built on the top of CREMA

Java library for CNs

Exact inference by credal variable elimination only for small models 
ApproxLP (Antonucci et al., 2014) allows to process larger models 

RMSE always <0.7%
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Intermezzo: Belief Functions (as Credal Sets)

• Linear constraints for CN induced by SCM 
have a peculiar form 

• These are CS corresponding to belief 
functions (Dempster '68, Shafer '76) 

• Class of generalised probabilistic models 

• PMF distributes mass over the singletons, 
BF over (poss. overlapping) sets  

• Dempster's multi-valued mapping,           
in SCMs  ,  

• Dedicated conditioning/combination rules

U = f −1(X) BF(U) := f −1[P(X)]

Alessandro Antonucci, IDSIA

∑
u : condition

P(u) = const

Credits: Fabio Cuzzolin
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Back to SCM2CN: Non Quasi-Markovian Case

• Non Quasi-Markovian? Non-Linear constraint 

• E.g.,  

• Merge exogenous variables  

• Independence constraints can be disregarded 
(but higher exogenous dimensionality) 

• Again CN approximate inference to solve 
causal queries 

• State space dimensionality affects complexity 

• We might have very large latent spaces ...

∑ P(u1) ⋅ P(u2) = …
U := (U1, U2)
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Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

𝒢
P(B |A)

Alessandro Antonucci, IDSIA

B

UB

A

b = fB(a, uB)
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Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

𝒢
P(B |A)

Alessandro Antonucci, IDSIA

B

UB

A

b = fB(a, uB)

P(B 
A) A=0 A=1

B=0 1 1

B=1 0 0

A=0 A=1

1 0

0 1

A=0 A=1

0 1

1 0

A=0 A=1

0 0

1 1

B = 0 B = A B = ¬A B = 1

P(B |A)
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Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

•  indexing all these deterministic CPTs 

𝒢
P(B |A)
UB

Alessandro Antonucci, IDSIA

B

UB

A

b = fB(a, uB)

UB=0 UB=1 UB=2 UB=3
A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1

B=0 1 1 1 0 0 1 0 0
B=1 0 0 0 1 1 0 1 1

U=0 U=1 U=2 U=3

B = 0 B = A B = ¬A B = 1

P(B |A, U)
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Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

•  indexing all these deterministic CPTs 

• Knowledge might discard some states     
(ex., Bob goes to the party if Ann does) 

𝒢
P(B |A)
UB

Alessandro Antonucci, IDSIA

B

UB

A

b = fB(a, uB)

B = 0 B = A B = ¬A B = 1

P(B |A, U)
UB=0 UB=1 UB=2 UB=3

A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1
B=0 1 1 1 0 0 1 0 0
B=1 0 0 0 1 1 0 1 1

U=0 U=1 U=2 U=3
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Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

•  indexing all these deterministic CPTs 

• Knowledge might discard some states     
(ex., Bob goes to the party if Ann does) 

• With Boolean parent & child)    
in general (exp size) : 

  

𝒢
P(B |A)
UB

|U | = 4

|U | = |X |∏Y∈PaY
|Y|

Alessandro Antonucci, IDSIA

B

UB

A

b = fB(a, uB)

B = 0 B = A B = ¬A B = 1

P(B |A, U)
UB=0 UB=1 UB=2 UB=3

A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1
B=0 1 1 1 0 0 1 0 0
B=1 0 0 0 1 1 0 1 1

U=0 U=1 U=2 U=3
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Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

•  indexing all these deterministic CPTs 

• Knowledge might discard some states     
(ex., Bob goes to the party if Ann does) 

• With Boolean parent & child)    
in general (exp size) : 

  

𝒢
P(B |A)
UB

|U | = 4

|U | = |X |∏Y∈PaY
|Y|

Alessandro Antonucci, IDSIA

B

UB

A

b = fB(a, uB)

B = 0 B = A B = ¬A B = 1

P(B |A, U)
UB=0 UB=1 UB=2 UB=3

A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1
B=0 1 1 1 0 0 1 0 0
B=1 0 0 0 1 1 0 1 1

U=0 U=1 U=2 U=3

CFs based on         
 and  only𝒢 𝒟
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An Application: Counterfactual Analysis in Palliative Cares 

Alessandro Antonucci, IDSIA

• Study of terminally ill cancer 
patients’ preferences wrt their 
place of death (home or hospital) 

•  obtained by expert 
knowledge and data 

• Exogenous variables? 

• Markovian assumption             
(= no confounders)

𝒢
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An Application: Counterfactual Analysis in Palliative Cares 

Alessandro Antonucci, IDSIA

• Most patients prefer to die at home 

• But a majority actually die in institutional settings 

• Interventions by health care professionals can facilitate dying at home?
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An Application: Counterfactual Analysis in Palliative Cares 

Alessandro Antonucci, IDSIA

• Importance of a variable?  

• Probability of necessity and sufficiency

PNS := P(YX=1 = 1,YX=0 = 0)
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An Application: Counterfactual Analysis in Palliative Cares 

Alessandro Antonucci, IDSIA

• Importance of a variable?  

• Probability of necessity and sufficiency

PNS := P(YX=1 = 1,YX=0 = 0)
Small CN but large 

cardinalities 
CF inference 

demanding ...
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Causal Expectation Maximisation (Zaffalon et al., 2021)

• Exogenous variables are always missing         
(MAR, asystematic, way) 

• Expectation Maximisation (Dempster  1977) 

– Random initialisation of P(U) 

– E-step: Missing data completion by 
expected (fractional) counts 

– M-step: "completed" data to retrain P(U) 

– Iterate until convergence 

• EM goes to a (local/global) max of log P(𝒟)

Alessandro Antonucci, IDSIA

U1 U2 X1 X2 n
* * 0 0 ...
* * 0 1 ...
* * 1 0 ...
* * 1 1 ...
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Casual EM: Likelihood Unimodality

Alessandro Antonucci, IDSIA

• Causal EM reduce should converge to global maxima only the 
corresponding  belongs to credal set  

• Sampling initialisations = sampling of   

• For each sample we obtain an inner point

P(U) K(U)
K(U)

LL

global optimum 

area of 
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Casual EM: Guarantees?

Alessandro Antonucci, IDSIA

• We first reduced causal queries to CN inference 

• Causal EM reduces CN inference to (iterated) BN inference 

• Identifiable queries? Each sample gives the same values        
(a numerical alternative to do-calculus) 

• Unidentifiable? Each sample as an inner point 

• Credible intervals can be derived
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Casual EM: Guarantees?

Alessandro Antonucci, IDSIA

• We first reduced causal queries to CN inference 

• Causal EM reduces CN inference to (iterated) BN inference 

• Identifiable queries? Each sample gives the same values        
(a numerical alternative to do-calculus) 

• Unidentifiable? Each sample as an inner point 

• Credible intervals can be derived

In practice? 
 20 EM runs to get close to the actual 

bounds with 95% credibility 
For identifiable queries 9 runs to be 

sure with 99% credibility
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Causal EM: Experiments

163Alessandro Antonucci, IDSIA

PNS for artificial SMCs: quick convergence 
(= much faster than direct CN approach)

emer



Causal Analysis from Biased Data

• Selective data acquisition            
(untreated M and treated F missing)

Alessandro Antonucci, IDSIA

X

Treatment
X

Recovery
Y

Gender
Z

counts

0 0 0 2

1 0 0 41

0 1 0 114

1 1 0 313

0 0 1 107

1 0 1 109

0 1 1 13

1 1 1 1

[Müeller et al., 2022]
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Causal Analysis from Biased Data

• Selective data acquisition            
(untreated M and treated F missing) 

• A (Boolean) selector variable S ≡ (X ≠ Z )

Alessandro Antonucci, IDSIA

X

Treat,   
X

Recover
y

Gender
Z

Selector 
S

counts

* * * 0 2

1 0 0 1 41

* * * 0 114

1 1 0 1 313

0 0 1 1 107

* * * 0 109

0 1 1 1 13

* * * 0 1

[Müeller et al., 2022]
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Causal Analysis from Biased Data

• Selective data acquisition            
(untreated M and treated F missing) 

• A (Boolean) selector variable  

• Assume we know 

S ≡ (X ≠ Z )

n(S = 0) ∝ P(S = 0)

Alessandro Antonucci, IDSIA

X

Treat,   
X

Recover
y
Y

Gender
Z

Selector 
S

counts

1 0 0 1 41

1 1 0 1 313

0 0 1 1 107

0 1 1 1 13

* * * 0 226

[Müeller et al., 2022]
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Causal Analysis from Biased Data

• Selective data acquisition            
(untreated M and treated F missing) 

• A (Boolean) selector variable  

• Assume we know  

• Interventional queries with bias? 

• Do calculus for selection bias      
Barenboim & Tian (AAAI, 2015)

S ≡ (X ≠ Z )

n(S = 0) ∝ P(S = 0)
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Selector 
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Causal Analysis from Biased Data

• Selective data acquisition            
(untreated M and treated F missing) 

• A (Boolean) selector variable  

• Assume we know  

• Interventional queries with bias? 

• Do calculus for selection bias      
Barenboim & Tian (AAAI, 2015) 

• Unidentifiable queries? 

• Our EM(CC) can be used for that!

S ≡ (X ≠ Z )

n(S = 0) ∝ P(S = 0)

Alessandro Antonucci, IDSIA

X

Treat,   
X

Recover
y
Y

Gender
Z

Selector 
S

counts

1 0 0 1 41

1 1 0 1 313

0 0 1 1 107

0 1 1 1 13

* * * 0 226

[Müeller et al., 2022]
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Back to the Biased Data ...

•  determined by an equation, a SCM!S

Alessandro Antonucci, IDSIA

UX UY UZ X Y Z S n

* * * 1 0 0 1 41

* * * 1 1 0 1 313

* * * 0 0 1 1 107

* * * 0 1 1 1 13

* * * * * * 0 226
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Back to the Biased Data ...

•  determined by an equation, a SCM! 

• CN approach? No,  induces 
relations between 's in the CN

S
S = 1

P(U)

Alessandro Antonucci, IDSIA

UX UY UZ X Y Z S n

* * * 1 0 0 1 41

* * * 1 1 0 1 313

* * * 0 0 1 1 107

* * * 0 1 1 1 13

* * * * * * 0 226
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Back to the Biased Data ...

•  determined by an equation, a SCM! 

• CN approach? No,  induces 
relations between 's in the CN 

• EM? Maybe, but "non-rectangular" 
missingness, might kill unimodality ... 

• Convergence to max preserved? 
(hence inner points of )

S
S = 1

P(U)

[P, P]

Alessandro Antonucci, IDSIA

UX UY UZ X Y Z S n

* * * 1 0 0 1 41

* * * 1 1 0 1 313

* * * 0 0 1 1 107

* * * 0 1 1 1 13

* * * * * * 0 226
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Back to the Biased Data ...

•  determined by an equation, a SCM! 

• CN approach? No,  induces 
relations between 's in the CN 

• EM? Maybe, but "non-rectangular" 
missingness, might kill unimodality ... 

• Convergence to max preserved? 
(hence inner points of )

S
S = 1

P(U)

[P, P]

Alessandro Antonucci, IDSIA

UX UY UZ X Y Z S n

* * * 1 0 0 1 41

* * * 1 1 0 1 313

* * * 0 0 1 1 107

* * * 0 1 1 1 13

* * * * * * 0 226

Yes!
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Extensions: Hybrid Data

VII. SCMs  CNs≡



Alessandro Antonucci, IDSIA

Symbolic Knowledge Compilation (TPM 2023)

• Joint work with Adnan Darwiche and Hizuo Chen 
• Our EM requires many (BN) queries 
• Equations remain constant 
• Compile BN once, use many times 
• Symbolic compilation
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Alessandro Antonucci, IDSIA

Current Work: Symbolic Knowledge Compilation (TPM 2023)

• Joint work with Adnan Darwiche and Hizuo Chen 
• Our EM requires many (BN) queries 
• Equations remain constant 
• Compile BN once, use many times 
• Symbolic compilation

SCM 
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Symbolic Knowledge Compilation (TPM 2023)

• Joint work with Adnan Darwiche and Hizuo Chen 
• Our EM requires many (BN) queries 
• Equations remain constant 
• Compile BN once, use many times 
• Symbolic compilation

SCM 
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Alessandro Antonucci, IDSIA

Current Work: Causal Graphs by LLMs (AI4SCIENCE 2024)

• GPT parsing causal statements in natural language 

• Link with IPs? Multiple causal graphs might be returned! 

• Many recent papers on bounding counterfactual wrt 
ignorance about the causal structure (credal structures?)
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Our Earlier Work:

Prompt 
Engineering Good Causal Relation 

Identification/Orientation

Multiple Paths 
Direct-vs-Indirect Causes

Causal Loops

🙂 ☹

LLMs



Results (LLM vs. Fine-Tuning, F1 score)

• Bert  (FS) LLM≫

With 10-shot small improvement of ZS,  
but no wrt Cues ...
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Counterfactual Analysis in Palliative Cares by Causal EM

Alessandro Antonucci, IDSIA

• Importance of a variable?  

• Probability of necessity and sufficiency 

• 15 EM runs before convergence

PNS := P(YX=1 = 1,YX=0 = 0)

PNS(Triangolo) ∈ [0.30,0.31]PNS(Patient_Awareness) ∈ [0.03,0.10]

PNS(Family_Awareness) ∈ [0.06,0.10]
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Counterfactual Analysis in Palliative Cares by Causal EM

Alessandro Antonucci, IDSIA

• Importance of a variable?  

• Probability of necessity and sufficiency 

• 15 EM runs before convergence

PNS := P(YX=1 = 1,YX=0 = 0)

PNS(Triangolo) ∈ [0.30,0.31]PNS(Patient_Awareness) ∈ [0.03,0.10]

PNS(Family_Awareness) ∈ [0.06,0.10]

One should act on Triangolo first: for instance, 
by making Triangolo available to all patients, we 

should expect a reduction of people at the 
hospital by 30% 

This would save money too, and would allow 
politicians to do economic considerations as to 
which amount it is even economically profitable 

to fund Triangolo, and have patients die at 
home, rather than spending more to have 

patients die at the hospital
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Conclusions

• Causality theories have an intimate connection with IPs 

• Past research about CNs might offer new tools for causal analysis 

• IPs offer formalism for a deeper SCMs understanding 

• (Our) current challenge: learn non-canonical structural equations 

• This also involves neuro-symbolic approaches with neural nets 
playing the role of (approximating) structural equations 

• Plugging causal symbolic knowledge into (large) neural models can 
be a promising direction to solve current limitations (halucinations) 

• Lot of works has to be done, causal machine (and reinforcement) 
learning is just at the beginning!
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• Causality theories have an intimate connection with IPs 

• Past research about CNs might offer new tools for causal analysis 

• IPs offer formalism for a deeper SCMs understanding 

• (Our) current challenge: learn non-canonical structural equations 

• This also involves neuro-symbolic approaches with neural nets 
playing the role of (approximating) structural equations 

• Plugging causal symbolic knowledge into (large) neural models can 
be a promising direction to solve current limitations (halucinations) 

• Lot of works has to be done, causal machine (and reinforcement) 
learning is just at the beginning!

Alessandro Antonucci, IDSIA

I'll be here Tue&Fri 
but also alessandro@idsia.ch

Conclusions



Friday's Project

Practical Bounding of Counterfactual Inferences by Credal Networks  
Consider an observational (or interventional or hybrid) dataset. 

Say that you are interested in causal inference and in particolar in a counterfactual analysis. 

You can use the dataset based on recovery/treatment/gender data, but if you have your own 
data is even better. I can support you during the project.  

The main steps are: 

- Identification of the causal, counterfactual, query we want to answer. 

- Identification of the underlying causal graph and possible latent confounders. 

- Specification (expert-based or canonical) of the structural equations. 

- Implementation of the equivalent credal network. 

- Computation of the bounds and analysis of the results. 

Even if we have dedicated software tools for that, for small models like the one proposed to 
the participants, the analysis can also be sketched on paper (or in a Python notebook). 

ConclusionsAlessandro Antonucci, IDSIA


